Author:
Publisher: Wiley-Interscience
ISBN: 9780471744047
Category : Mathematics
Languages : en
Pages : 400
Book Description
ENCYCLOPEDIA OF STATISTICAL SCIENCES
Encyclopedia of Statistical Sciences, Volume 14
Author:
Publisher: Wiley-Interscience
ISBN: 9780471744047
Category : Mathematics
Languages : en
Pages : 400
Book Description
ENCYCLOPEDIA OF STATISTICAL SCIENCES
Publisher: Wiley-Interscience
ISBN: 9780471744047
Category : Mathematics
Languages : en
Pages : 400
Book Description
ENCYCLOPEDIA OF STATISTICAL SCIENCES
Geostatistics for Engineers and Earth Scientists
Author: Ricardo A. Olea
Publisher: Springer Science & Business Media
ISBN: 1461550017
Category : Mathematics
Languages : en
Pages : 310
Book Description
Geostatistics for Engineers and Earth Scientists
Publisher: Springer Science & Business Media
ISBN: 1461550017
Category : Mathematics
Languages : en
Pages : 310
Book Description
Geostatistics for Engineers and Earth Scientists
Analysis and Optimization of Systems
Author: A. Bensoussan
Publisher: Springer
ISBN: 3540398562
Category : Technology & Engineering
Languages : en
Pages : 895
Book Description
INRIA, Institut National de Recherche en Informatique et en Automatique
Publisher: Springer
ISBN: 3540398562
Category : Technology & Engineering
Languages : en
Pages : 895
Book Description
INRIA, Institut National de Recherche en Informatique et en Automatique
Numerical Ecology
Author: P. Legendre
Publisher: Elsevier
ISBN: 0444538690
Category : Science
Languages : en
Pages : 1007
Book Description
The book describes and discusses the numerical methods which are successfully being used for analysing ecological data, using a clear and comprehensive approach. These methods are derived from the fields of mathematical physics, parametric and nonparametric statistics, information theory, numerical taxonomy, archaeology, psychometry, sociometry, econometry and others. - An updated, 3rd English edition of the most widely cited book on quantitative analysis of multivariate ecological data - Relates ecological questions to methods of statistical analysis, with a clear description of complex numerical methods - All methods are illustrated by examples from the ecological literature so that ecologists clearly see how to use the methods and approaches in their own research - All calculations are available in R language functions
Publisher: Elsevier
ISBN: 0444538690
Category : Science
Languages : en
Pages : 1007
Book Description
The book describes and discusses the numerical methods which are successfully being used for analysing ecological data, using a clear and comprehensive approach. These methods are derived from the fields of mathematical physics, parametric and nonparametric statistics, information theory, numerical taxonomy, archaeology, psychometry, sociometry, econometry and others. - An updated, 3rd English edition of the most widely cited book on quantitative analysis of multivariate ecological data - Relates ecological questions to methods of statistical analysis, with a clear description of complex numerical methods - All methods are illustrated by examples from the ecological literature so that ecologists clearly see how to use the methods and approaches in their own research - All calculations are available in R language functions
Encyclopedia of Statistical Sciences
Author: Samuel Kotz
Publisher:
ISBN:
Category : Mathematical statistics
Languages : en
Pages : 888
Book Description
Publisher:
ISBN:
Category : Mathematical statistics
Languages : en
Pages : 888
Book Description
Advanced Studies in Behaviormetrics and Data Science
Author: Tadashi Imaizumi
Publisher: Springer Nature
ISBN: 9811527008
Category : Social Science
Languages : en
Pages : 472
Book Description
This book focuses on the latest developments in behaviormetrics and data science, covering a wide range of topics in data analysis and related areas of data science, including analysis of complex data, analysis of qualitative data, methods for high-dimensional data, dimensionality reduction, visualization of such data, multivariate statistical methods, analysis of asymmetric relational data, and various applications to real data. In addition to theoretical and methodological results, it also shows how to apply the proposed methods to a variety of problems, for example in consumer behavior, decision making, marketing data, and social network structures. Moreover, it discuses methodological aspects and applications in a wide range of areas, such as behaviormetrics; behavioral science; psychology; and marketing, management and social sciences. Combining methodological advances with real-world applications collected from a variety of research fields, the book is a valuable resource for researchers and practitioners, as well as for applied statisticians and data analysts.
Publisher: Springer Nature
ISBN: 9811527008
Category : Social Science
Languages : en
Pages : 472
Book Description
This book focuses on the latest developments in behaviormetrics and data science, covering a wide range of topics in data analysis and related areas of data science, including analysis of complex data, analysis of qualitative data, methods for high-dimensional data, dimensionality reduction, visualization of such data, multivariate statistical methods, analysis of asymmetric relational data, and various applications to real data. In addition to theoretical and methodological results, it also shows how to apply the proposed methods to a variety of problems, for example in consumer behavior, decision making, marketing data, and social network structures. Moreover, it discuses methodological aspects and applications in a wide range of areas, such as behaviormetrics; behavioral science; psychology; and marketing, management and social sciences. Combining methodological advances with real-world applications collected from a variety of research fields, the book is a valuable resource for researchers and practitioners, as well as for applied statisticians and data analysts.
Fundamental Statistical Inference
Author: Marc S. Paolella
Publisher: John Wiley & Sons
ISBN: 1119417872
Category : Mathematics
Languages : en
Pages : 584
Book Description
A hands-on approach to statistical inference that addresses the latest developments in this ever-growing field This clear and accessible book for beginning graduate students offers a practical and detailed approach to the field of statistical inference, providing complete derivations of results, discussions, and MATLAB programs for computation. It emphasizes details of the relevance of the material, intuition, and discussions with a view towards very modern statistical inference. In addition to classic subjects associated with mathematical statistics, topics include an intuitive presentation of the (single and double) bootstrap for confidence interval calculations, shrinkage estimation, tail (maximal moment) estimation, and a variety of methods of point estimation besides maximum likelihood, including use of characteristic functions, and indirect inference. Practical examples of all methods are given. Estimation issues associated with the discrete mixtures of normal distribution, and their solutions, are developed in detail. Much emphasis throughout is on non-Gaussian distributions, including details on working with the stable Paretian distribution and fast calculation of the noncentral Student's t. An entire chapter is dedicated to optimization, including development of Hessian-based methods, as well as heuristic/genetic algorithms that do not require continuity, with MATLAB codes provided. The book includes both theory and nontechnical discussions, along with a substantial reference to the literature, with an emphasis on alternative, more modern approaches. The recent literature on the misuse of hypothesis testing and p-values for model selection is discussed, and emphasis is given to alternative model selection methods, though hypothesis testing of distributional assumptions is covered in detail, notably for the normal distribution. Presented in three parts—Essential Concepts in Statistics; Further Fundamental Concepts in Statistics; and Additional Topics—Fundamental Statistical Inference: A Computational Approach offers comprehensive chapters on: Introducing Point and Interval Estimation; Goodness of Fit and Hypothesis Testing; Likelihood; Numerical Optimization; Methods of Point Estimation; Q-Q Plots and Distribution Testing; Unbiased Point Estimation and Bias Reduction; Analytic Interval Estimation; Inference in a Heavy-Tailed Context; The Method of Indirect Inference; and, as an appendix, A Review of Fundamental Concepts in Probability Theory, the latter to keep the book self-contained, and giving material on some advanced subjects such as saddlepoint approximations, expected shortfall in finance, calculation with the stable Paretian distribution, and convergence theorems and proofs.
Publisher: John Wiley & Sons
ISBN: 1119417872
Category : Mathematics
Languages : en
Pages : 584
Book Description
A hands-on approach to statistical inference that addresses the latest developments in this ever-growing field This clear and accessible book for beginning graduate students offers a practical and detailed approach to the field of statistical inference, providing complete derivations of results, discussions, and MATLAB programs for computation. It emphasizes details of the relevance of the material, intuition, and discussions with a view towards very modern statistical inference. In addition to classic subjects associated with mathematical statistics, topics include an intuitive presentation of the (single and double) bootstrap for confidence interval calculations, shrinkage estimation, tail (maximal moment) estimation, and a variety of methods of point estimation besides maximum likelihood, including use of characteristic functions, and indirect inference. Practical examples of all methods are given. Estimation issues associated with the discrete mixtures of normal distribution, and their solutions, are developed in detail. Much emphasis throughout is on non-Gaussian distributions, including details on working with the stable Paretian distribution and fast calculation of the noncentral Student's t. An entire chapter is dedicated to optimization, including development of Hessian-based methods, as well as heuristic/genetic algorithms that do not require continuity, with MATLAB codes provided. The book includes both theory and nontechnical discussions, along with a substantial reference to the literature, with an emphasis on alternative, more modern approaches. The recent literature on the misuse of hypothesis testing and p-values for model selection is discussed, and emphasis is given to alternative model selection methods, though hypothesis testing of distributional assumptions is covered in detail, notably for the normal distribution. Presented in three parts—Essential Concepts in Statistics; Further Fundamental Concepts in Statistics; and Additional Topics—Fundamental Statistical Inference: A Computational Approach offers comprehensive chapters on: Introducing Point and Interval Estimation; Goodness of Fit and Hypothesis Testing; Likelihood; Numerical Optimization; Methods of Point Estimation; Q-Q Plots and Distribution Testing; Unbiased Point Estimation and Bias Reduction; Analytic Interval Estimation; Inference in a Heavy-Tailed Context; The Method of Indirect Inference; and, as an appendix, A Review of Fundamental Concepts in Probability Theory, the latter to keep the book self-contained, and giving material on some advanced subjects such as saddlepoint approximations, expected shortfall in finance, calculation with the stable Paretian distribution, and convergence theorems and proofs.
Frontiers in Statistical Quality Control 11
Author: Sven Knoth
Publisher: Springer
ISBN: 3319123556
Category : Computers
Languages : en
Pages : 398
Book Description
The main focus of this edited volume is on three major areas of statistical quality control: statistical process control (SPC), acceptance sampling and design of experiments. The majority of the papers deal with statistical process control, while acceptance sampling and design of experiments are also treated to a lesser extent. The book is organized into four thematic parts, with Part I addressing statistical process control. Part II is devoted to acceptance sampling. Part III covers the design of experiments, while Part IV discusses related fields. The twenty-three papers in this volume stem from The 11th International Workshop on Intelligent Statistical Quality Control, which was held in Sydney, Australia from August 20 to August 23, 2013. The event was hosted by Professor Ross Sparks, CSIRO Mathematics, Informatics and Statistics, North Ryde, Australia and was jointly organized by Professors S. Knoth, W. Schmid and Ross Sparks. The papers presented here were carefully selected and reviewed by the scientific program committee, before being revised and adapted for this volume.
Publisher: Springer
ISBN: 3319123556
Category : Computers
Languages : en
Pages : 398
Book Description
The main focus of this edited volume is on three major areas of statistical quality control: statistical process control (SPC), acceptance sampling and design of experiments. The majority of the papers deal with statistical process control, while acceptance sampling and design of experiments are also treated to a lesser extent. The book is organized into four thematic parts, with Part I addressing statistical process control. Part II is devoted to acceptance sampling. Part III covers the design of experiments, while Part IV discusses related fields. The twenty-three papers in this volume stem from The 11th International Workshop on Intelligent Statistical Quality Control, which was held in Sydney, Australia from August 20 to August 23, 2013. The event was hosted by Professor Ross Sparks, CSIRO Mathematics, Informatics and Statistics, North Ryde, Australia and was jointly organized by Professors S. Knoth, W. Schmid and Ross Sparks. The papers presented here were carefully selected and reviewed by the scientific program committee, before being revised and adapted for this volume.
Statistics in Epidemiology
Author: Hardeo Sahai
Publisher: CRC Press
ISBN: 9780849394447
Category : Mathematics
Languages : en
Pages : 350
Book Description
Epidemiologic studies provide research strategies for investigating public health and scientific questions relating to the factors that cause and prevent ailments in human populations. Statistics in Epidemiology: Methods, Techniques and Applications presents a comprehensive review of the wide range of principles, methods and techniques underlying prospective, retrospective and cross-sectional approaches to epidemiologic studies. Written for epidemiologists and other researchers without extensive backgrounds in statistics, this new book provides a clear and concise description of the statistical tools used in epidemiology. Emphasis is given to the application of these statistical tools, and examples are provided to illustrate direct methods for applying common statistical techniques in order to obtain solutions to problems. Statistics in Epidemiology: Methods, Techniques and Applications goes beyond the elementary material found in basic epidemiology and biostatistics books and provides a detailed account of techniques:
Publisher: CRC Press
ISBN: 9780849394447
Category : Mathematics
Languages : en
Pages : 350
Book Description
Epidemiologic studies provide research strategies for investigating public health and scientific questions relating to the factors that cause and prevent ailments in human populations. Statistics in Epidemiology: Methods, Techniques and Applications presents a comprehensive review of the wide range of principles, methods and techniques underlying prospective, retrospective and cross-sectional approaches to epidemiologic studies. Written for epidemiologists and other researchers without extensive backgrounds in statistics, this new book provides a clear and concise description of the statistical tools used in epidemiology. Emphasis is given to the application of these statistical tools, and examples are provided to illustrate direct methods for applying common statistical techniques in order to obtain solutions to problems. Statistics in Epidemiology: Methods, Techniques and Applications goes beyond the elementary material found in basic epidemiology and biostatistics books and provides a detailed account of techniques:
Proceedings of the First US/Japan Conference on the Frontiers of Statistical Modeling: An Informational Approach
Author: H. Bozdogan
Publisher: Springer Science & Business Media
ISBN: 9401108005
Category : Mathematics
Languages : en
Pages : 421
Book Description
Often a statistical analysis involves use of a set of alternative models for the data. A "model-selection criterion" is a formula which provides a figure-of merit for the alternative models. Generally the alternative models will involve different numhers of parameters. Model-selection criteria take into account hoth the goodness-or-fit of a model and the numher of parameters used to achieve that fit. 1.1. SETS OF ALTERNATIVE MODELS Thus the focus in this paper is on data-analytic situations ill which there is consideration of a set of alternative models. Choice of a suhset of explanatory variahles in regression, the degree of a polynomial regression, the number of factors in factor analysis, or the numher of dusters in duster analysis are examples of such situations. 1.2. MODEL SELECTION VERSUS HYPOTHESIS TESTING In exploratory data analysis or in a preliminary phase of inference an approach hased on model-selection criteria can offer advantages over tests of hypotheses. The model-selection approach avoids the prohlem of specifying error rates for the tests. With model selection the focus can he on simultaneous competition between a hroad dass of competing models rather than on consideration of a sequence of simpler and simpler models.
Publisher: Springer Science & Business Media
ISBN: 9401108005
Category : Mathematics
Languages : en
Pages : 421
Book Description
Often a statistical analysis involves use of a set of alternative models for the data. A "model-selection criterion" is a formula which provides a figure-of merit for the alternative models. Generally the alternative models will involve different numhers of parameters. Model-selection criteria take into account hoth the goodness-or-fit of a model and the numher of parameters used to achieve that fit. 1.1. SETS OF ALTERNATIVE MODELS Thus the focus in this paper is on data-analytic situations ill which there is consideration of a set of alternative models. Choice of a suhset of explanatory variahles in regression, the degree of a polynomial regression, the number of factors in factor analysis, or the numher of dusters in duster analysis are examples of such situations. 1.2. MODEL SELECTION VERSUS HYPOTHESIS TESTING In exploratory data analysis or in a preliminary phase of inference an approach hased on model-selection criteria can offer advantages over tests of hypotheses. The model-selection approach avoids the prohlem of specifying error rates for the tests. With model selection the focus can he on simultaneous competition between a hroad dass of competing models rather than on consideration of a sequence of simpler and simpler models.