Encyclopedia of Knot Theory

Encyclopedia of Knot Theory PDF Author: Colin Adams
Publisher: CRC Press
ISBN: 9781138297845
Category : Knot theory
Languages : en
Pages : 928

Get Book Here

Book Description
This books provides short, interconnected articles on a variety of active areas in knot theory, and includes beautiful pictures, deep mathematical connections, and critical applications edited and contributed to by top researchers in the field of knot theory. The articles in this book are accessible to both undergrads and researchers.

Encyclopedia of Knot Theory

Encyclopedia of Knot Theory PDF Author: Colin Adams
Publisher: CRC Press
ISBN: 1000222381
Category : Education
Languages : en
Pages : 954

Get Book Here

Book Description
"Knot theory is a fascinating mathematical subject, with multiple links to theoretical physics. This enyclopedia is filled with valuable information on a rich and fascinating subject." – Ed Witten, Recipient of the Fields Medal "I spent a pleasant afternoon perusing the Encyclopedia of Knot Theory. It’s a comprehensive compilation of clear introductions to both classical and very modern developments in the field. It will be a terrific resource for the accomplished researcher, and will also be an excellent way to lure students, both graduate and undergraduate, into the field." – Abigail Thompson, Distinguished Professor of Mathematics at University of California, Davis Knot theory has proven to be a fascinating area of mathematical research, dating back about 150 years. Encyclopedia of Knot Theory provides short, interconnected articles on a variety of active areas in knot theory, and includes beautiful pictures, deep mathematical connections, and critical applications. Many of the articles in this book are accessible to undergraduates who are working on research or taking an advanced undergraduate course in knot theory. More advanced articles will be useful to graduate students working on a related thesis topic, to researchers in another area of topology who are interested in current results in knot theory, and to scientists who study the topology and geometry of biopolymers. Features Provides material that is useful and accessible to undergraduates, postgraduates, and full-time researchers Topics discussed provide an excellent catalyst for students to explore meaningful research and gain confidence and commitment to pursuing advanced degrees Edited and contributed by top researchers in the field of knot theory

Handbook of Knot Theory

Handbook of Knot Theory PDF Author: William Menasco
Publisher: Elsevier
ISBN: 9780080459547
Category : Mathematics
Languages : en
Pages : 502

Get Book Here

Book Description
This book is a survey of current topics in the mathematical theory of knots. For a mathematician, a knot is a closed loop in 3-dimensional space: imagine knotting an extension cord and then closing it up by inserting its plug into its outlet. Knot theory is of central importance in pure and applied mathematics, as it stands at a crossroads of topology, combinatorics, algebra, mathematical physics and biochemistry. * Survey of mathematical knot theory * Articles by leading world authorities * Clear exposition, not over-technical * Accessible to readers with undergraduate background in mathematics

A Survey of Knot Theory

A Survey of Knot Theory PDF Author: Akio Kawauchi
Publisher: Birkhäuser
ISBN: 3034892276
Category : Mathematics
Languages : en
Pages : 431

Get Book Here

Book Description
Knot theory is a rapidly developing field of research with many applications, not only for mathematics. The present volume, written by a well-known specialist, gives a complete survey of this theory from its very beginnings to today's most recent research results. An indispensable book for everyone concerned with knot theory.

Hyperbolic Knot Theory

Hyperbolic Knot Theory PDF Author: Jessica S. Purcell
Publisher: American Mathematical Soc.
ISBN: 1470454998
Category : Education
Languages : en
Pages : 392

Get Book Here

Book Description
This book provides an introduction to hyperbolic geometry in dimension three, with motivation and applications arising from knot theory. Hyperbolic geometry was first used as a tool to study knots by Riley and then Thurston in the 1970s. By the 1980s, combining work of Mostow and Prasad with Gordon and Luecke, it was known that a hyperbolic structure on a knot complement in the 3-sphere gives a complete knot invariant. However, it remains a difficult problem to relate the hyperbolic geometry of a knot to other invariants arising from knot theory. In particular, it is difficult to determine hyperbolic geometric information from a knot diagram, which is classically used to describe a knot. This textbook provides background on these problems, and tools to determine hyperbolic information on knots. It also includes results and state-of-the art techniques on hyperbolic geometry and knot theory to date. The book was written to be interactive, with many examples and exercises. Some important results are left to guided exercises. The level is appropriate for graduate students with a basic background in algebraic topology, particularly fundamental groups and covering spaces. Some experience with some differential topology and Riemannian geometry will also be helpful.

Encyclopedia of Social Theory

Encyclopedia of Social Theory PDF Author: Austin Harrington
Publisher: Psychology Press
ISBN: 0415290465
Category : Reference
Languages : en
Pages : 752

Get Book Here

Book Description
The Encyclopedia of Social Theory cuts across all relevant disciplines, theories, approaches, and schools to present the latest information and research.

The Knot Book

The Knot Book PDF Author: Colin Conrad Adams
Publisher: American Mathematical Soc.
ISBN: 0821836781
Category : Mathematics
Languages : en
Pages : 330

Get Book Here

Book Description
Knots are familiar objects. Yet the mathematical theory of knots quickly leads to deep results in topology and geometry. This work offers an introduction to this theory, starting with our understanding of knots. It presents the applications of knot theory to modern chemistry, biology and physics.

Concise Encyclopedia of Coding Theory

Concise Encyclopedia of Coding Theory PDF Author: W. Cary Huffman
Publisher: CRC Press
ISBN: 1351375105
Category : Computers
Languages : en
Pages : 998

Get Book Here

Book Description
Most coding theory experts date the origin of the subject with the 1948 publication of A Mathematical Theory of Communication by Claude Shannon. Since then, coding theory has grown into a discipline with many practical applications (antennas, networks, memories), requiring various mathematical techniques, from commutative algebra, to semi-definite programming, to algebraic geometry. Most topics covered in the Concise Encyclopedia of Coding Theory are presented in short sections at an introductory level and progress from basic to advanced level, with definitions, examples, and many references. The book is divided into three parts: Part I fundamentals: cyclic codes, skew cyclic codes, quasi-cyclic codes, self-dual codes, codes and designs, codes over rings, convolutional codes, performance bounds Part II families: AG codes, group algebra codes, few-weight codes, Boolean function codes, codes over graphs Part III applications: alternative metrics, algorithmic techniques, interpolation decoding, pseudo-random sequences, lattices, quantum coding, space-time codes, network coding, distributed storage, secret-sharing, and code-based-cryptography. Features Suitable for students and researchers in a wide range of mathematical disciplines Contains many examples and references Most topics take the reader to the frontiers of research

Knots and Links

Knots and Links PDF Author: Dale Rolfsen
Publisher: American Mathematical Soc.
ISBN: 0821834363
Category : Mathematics
Languages : en
Pages : 458

Get Book Here

Book Description
Rolfsen's beautiful book on knots and links can be read by anyone, from beginner to expert, who wants to learn about knot theory. Beginners find an inviting introduction to the elements of topology, emphasizing the tools needed for understanding knots, the fundamental group and van Kampen's theorem, for example, which are then applied to concrete problems, such as computing knot groups. For experts, Rolfsen explains advanced topics, such as the connections between knot theory and surgery and how they are useful to understanding three-manifolds. Besides providing a guide to understanding knot theory, the book offers 'practical' training. After reading it, you will be able to do many things: compute presentations of knot groups, Alexander polynomials, and other invariants; perform surgery on three-manifolds; and visualize knots and their complements.It is characterized by its hands-on approach and emphasis on a visual, geometric understanding. Rolfsen offers invaluable insight and strikes a perfect balance between giving technical details and offering informal explanations. The illustrations are superb, and a wealth of examples are included. Now back in print by the AMS, the book is still a standard reference in knot theory. It is written in a remarkable style that makes it useful for both beginners and researchers. Particularly noteworthy is the table of knots and links at the end. This volume is an excellent introduction to the topic and is suitable as a textbook for a course in knot theory or 3-manifolds. Other key books of interest on this topic available from the AMS are ""The Shoelace Book: A Mathematical Guide to the Best (and Worst) Ways to Lace your Shoes"" and ""The Knot Book.""

Introduction to the Modern Theory of Dynamical Systems

Introduction to the Modern Theory of Dynamical Systems PDF Author: Anatole Katok
Publisher: Cambridge University Press
ISBN: 9780521575577
Category : Mathematics
Languages : en
Pages : 828

Get Book Here

Book Description
This book provided the first self-contained comprehensive exposition of the theory of dynamical systems as a core mathematical discipline closely intertwined with most of the main areas of mathematics. The authors introduce and rigorously develop the theory while providing researchers interested in applications with fundamental tools and paradigms. The book begins with a discussion of several elementary but fundamental examples. These are used to formulate a program for the general study of asymptotic properties and to introduce the principal theoretical concepts and methods. The main theme of the second part of the book is the interplay between local analysis near individual orbits and the global complexity of the orbit structure. The third and fourth parts develop the theories of low-dimensional dynamical systems and hyperbolic dynamical systems in depth. Over 400 systematic exercises are included in the text. The book is aimed at students and researchers in mathematics at all levels from advanced undergraduate up.