Author: David Pines
Publisher: CRC Press
ISBN: 0429961146
Category : Science
Languages : en
Pages : 250
Book Description
Evolution of self-replicating macromolecules through natural selection is a dynamically ordered process. Two concepts are introduced to describe the physical regularity of macromolecular evolution: sequence space and quasi-species. Natural selection means localization of a mutant distribution in sequence space. This localized distribution, called the quasi-species, is centered around a master sequence (or a degenerate set), that the biologist would call the wild-type. The self-ordering of such a system is an essential consequence of its formation through self-reproduction of its macromolecular consti tuents, a process that in the dynamical equations expresses itself by positive diagonal coefficients called selective values. The theory describes how population numbers of wild type and mutants are related to the distribution of selective values, that is to say, how value topography maps into population topography. For selectively (nearly) neutral mutants appearing in the quasi- species distribution, population numbers are greatly enhanced as compared to those of disadvantageous mutants, even more so in continuous domains of such selectively valuable mutants. As a consequence, mutants far distant from the wild type may occur because they are produced with the help of highly populated, less distant precursors. Since values are cohesively distributed, like mountains on earth, and since their positions are multiply connected in the high-dimensional sequence space, the overpopulation of (nearly) neural mutants provides guidance for the evolutionary process. Localization in sequence space, subject to a threshold in the fidelity of reproduction, is steadily challenged until an optimal state is reached. The model has been designed according to experimentally determined properties of self-replicating molecules. The conclusions reached from the theoretical models can be used to construct machines that provide optimal conditions for the evolution of functional macromolecules.
Emerging Syntheses In Science
Author: David Pines
Publisher: CRC Press
ISBN: 0429961146
Category : Science
Languages : en
Pages : 250
Book Description
Evolution of self-replicating macromolecules through natural selection is a dynamically ordered process. Two concepts are introduced to describe the physical regularity of macromolecular evolution: sequence space and quasi-species. Natural selection means localization of a mutant distribution in sequence space. This localized distribution, called the quasi-species, is centered around a master sequence (or a degenerate set), that the biologist would call the wild-type. The self-ordering of such a system is an essential consequence of its formation through self-reproduction of its macromolecular consti tuents, a process that in the dynamical equations expresses itself by positive diagonal coefficients called selective values. The theory describes how population numbers of wild type and mutants are related to the distribution of selective values, that is to say, how value topography maps into population topography. For selectively (nearly) neutral mutants appearing in the quasi- species distribution, population numbers are greatly enhanced as compared to those of disadvantageous mutants, even more so in continuous domains of such selectively valuable mutants. As a consequence, mutants far distant from the wild type may occur because they are produced with the help of highly populated, less distant precursors. Since values are cohesively distributed, like mountains on earth, and since their positions are multiply connected in the high-dimensional sequence space, the overpopulation of (nearly) neural mutants provides guidance for the evolutionary process. Localization in sequence space, subject to a threshold in the fidelity of reproduction, is steadily challenged until an optimal state is reached. The model has been designed according to experimentally determined properties of self-replicating molecules. The conclusions reached from the theoretical models can be used to construct machines that provide optimal conditions for the evolution of functional macromolecules.
Publisher: CRC Press
ISBN: 0429961146
Category : Science
Languages : en
Pages : 250
Book Description
Evolution of self-replicating macromolecules through natural selection is a dynamically ordered process. Two concepts are introduced to describe the physical regularity of macromolecular evolution: sequence space and quasi-species. Natural selection means localization of a mutant distribution in sequence space. This localized distribution, called the quasi-species, is centered around a master sequence (or a degenerate set), that the biologist would call the wild-type. The self-ordering of such a system is an essential consequence of its formation through self-reproduction of its macromolecular consti tuents, a process that in the dynamical equations expresses itself by positive diagonal coefficients called selective values. The theory describes how population numbers of wild type and mutants are related to the distribution of selective values, that is to say, how value topography maps into population topography. For selectively (nearly) neutral mutants appearing in the quasi- species distribution, population numbers are greatly enhanced as compared to those of disadvantageous mutants, even more so in continuous domains of such selectively valuable mutants. As a consequence, mutants far distant from the wild type may occur because they are produced with the help of highly populated, less distant precursors. Since values are cohesively distributed, like mountains on earth, and since their positions are multiply connected in the high-dimensional sequence space, the overpopulation of (nearly) neural mutants provides guidance for the evolutionary process. Localization in sequence space, subject to a threshold in the fidelity of reproduction, is steadily challenged until an optimal state is reached. The model has been designed according to experimentally determined properties of self-replicating molecules. The conclusions reached from the theoretical models can be used to construct machines that provide optimal conditions for the evolution of functional macromolecules.
Emerging Syntheses In Science
Author: David Pines
Publisher: CRC Press
ISBN: 0429972229
Category : Science
Languages : en
Pages : 267
Book Description
Evolution of self-replicating macromolecules through natural selection is a dynamically ordered process. Two concepts are introduced to describe the physical regularity of macromolecular evolution: sequence space and quasi-species. Natural selection means localization of a mutant distribution in sequence space. This localized distribution, called the quasi-species, is centered around a master sequence (or a degenerate set), that the biologist would call the wild-type. The self-ordering of such a system is an essential consequence of its formation through self-reproduction of its macromolecular consti tuents, a process that in the dynamical equations expresses itself by positive diagonal coefficients called selective values. The theory describes how population numbers of wild type and mutants are related to the distribution of selective values, that is to say, how value topography maps into population topography. For selectively (nearly) neutral mutants appearing in the quasi- species distribution, population numbers are greatly enhanced as compared to those of disadvantageous mutants, even more so in continuous domains of such selectively valuable mutants. As a consequence, mutants far distant from the wild type may occur because they are produced with the help of highly populated, less distant precursors. Since values are cohesively distributed, like mountains on earth, and since their positions are multiply connected in the high-dimensional sequence space, the overpopulation of (nearly) neural mutants provides guidance for the evolutionary process. Localization in sequence space, subject to a threshold in the fidelity of reproduction, is steadily challenged until an optimal state is reached. The model has been designed according to experimentally determined properties of self-replicating molecules. The conclusions reached from the theoretical models can be used to construct machines that provide optimal conditions for the evolution of functional macromolecules.
Publisher: CRC Press
ISBN: 0429972229
Category : Science
Languages : en
Pages : 267
Book Description
Evolution of self-replicating macromolecules through natural selection is a dynamically ordered process. Two concepts are introduced to describe the physical regularity of macromolecular evolution: sequence space and quasi-species. Natural selection means localization of a mutant distribution in sequence space. This localized distribution, called the quasi-species, is centered around a master sequence (or a degenerate set), that the biologist would call the wild-type. The self-ordering of such a system is an essential consequence of its formation through self-reproduction of its macromolecular consti tuents, a process that in the dynamical equations expresses itself by positive diagonal coefficients called selective values. The theory describes how population numbers of wild type and mutants are related to the distribution of selective values, that is to say, how value topography maps into population topography. For selectively (nearly) neutral mutants appearing in the quasi- species distribution, population numbers are greatly enhanced as compared to those of disadvantageous mutants, even more so in continuous domains of such selectively valuable mutants. As a consequence, mutants far distant from the wild type may occur because they are produced with the help of highly populated, less distant precursors. Since values are cohesively distributed, like mountains on earth, and since their positions are multiply connected in the high-dimensional sequence space, the overpopulation of (nearly) neural mutants provides guidance for the evolutionary process. Localization in sequence space, subject to a threshold in the fidelity of reproduction, is steadily challenged until an optimal state is reached. The model has been designed according to experimentally determined properties of self-replicating molecules. The conclusions reached from the theoretical models can be used to construct machines that provide optimal conditions for the evolution of functional macromolecules.
Emerging syntheses in science
Author: David Pines
Publisher:
ISBN: 9781947864054
Category :
Languages : en
Pages :
Book Description
Publisher:
ISBN: 9781947864054
Category :
Languages : en
Pages :
Book Description
Complexity
Author: M. Mitchell Waldrop
Publisher: Open Road Media
ISBN: 150405914X
Category : Science
Languages : en
Pages : 492
Book Description
“If you liked Chaos, you’ll love Complexity. Waldrop creates the most exciting intellectual adventure story of the year” (The Washington Post). In a rarified world of scientific research, a revolution has been brewing. Its activists are not anarchists, but rather Nobel Laureates in physics and economics and pony-tailed graduates, mathematicians, and computer scientists from all over the world. They have formed an iconoclastic think-tank and their radical idea is to create a new science: complexity. They want to know how a primordial soup of simple molecules managed to turn itself into the first living cell—and what the origin of life some four billion years ago can tell us about the process of technological innovation today. This book is their story—the story of how they have tried to forge what they like to call the science of the twenty-first century. “Lucidly shows physicists, biologists, computer scientists and economists swapping metaphors and reveling in the sense that epochal discoveries are just around the corner . . . [Waldrop] has a special talent for relaying the exhilaration of moments of intellectual insight.” —The New York Times Book Review “Where I enjoyed the book was when it dove into the actual question of complexity, talking about complex systems in economics, biology, genetics, computer modeling, and so on. Snippets of rare beauty here and there almost took your breath away.” —Medium “[Waldrop] provides a good grounding of what may indeed be the first flowering of a new science.” —Publishers Weekly
Publisher: Open Road Media
ISBN: 150405914X
Category : Science
Languages : en
Pages : 492
Book Description
“If you liked Chaos, you’ll love Complexity. Waldrop creates the most exciting intellectual adventure story of the year” (The Washington Post). In a rarified world of scientific research, a revolution has been brewing. Its activists are not anarchists, but rather Nobel Laureates in physics and economics and pony-tailed graduates, mathematicians, and computer scientists from all over the world. They have formed an iconoclastic think-tank and their radical idea is to create a new science: complexity. They want to know how a primordial soup of simple molecules managed to turn itself into the first living cell—and what the origin of life some four billion years ago can tell us about the process of technological innovation today. This book is their story—the story of how they have tried to forge what they like to call the science of the twenty-first century. “Lucidly shows physicists, biologists, computer scientists and economists swapping metaphors and reveling in the sense that epochal discoveries are just around the corner . . . [Waldrop] has a special talent for relaying the exhilaration of moments of intellectual insight.” —The New York Times Book Review “Where I enjoyed the book was when it dove into the actual question of complexity, talking about complex systems in economics, biology, genetics, computer modeling, and so on. Snippets of rare beauty here and there almost took your breath away.” —Medium “[Waldrop] provides a good grounding of what may indeed be the first flowering of a new science.” —Publishers Weekly
Emerging Syntheses In Science
Author: David Pines
Publisher: Westview Press
ISBN: 9780201156775
Category : Science
Languages : en
Pages : 237
Book Description
Publisher: Westview Press
ISBN: 9780201156775
Category : Science
Languages : en
Pages : 237
Book Description
History, Big History, & Metahistory
Author: David C. Krakauer
Publisher:
ISBN: 9781947864108
Category : History
Languages : en
Pages : 326
Book Description
Is there a "science of history"? Must historians be scientists? What is "history" anyway? Celebrated researchers and historians--including Pulitzer-Prize winner John Lewis Gaddis and Nobel laureate Murray Gell-Mann--debate these complex questions in this thoughtful collection of essays.
Publisher:
ISBN: 9781947864108
Category : History
Languages : en
Pages : 326
Book Description
Is there a "science of history"? Must historians be scientists? What is "history" anyway? Celebrated researchers and historians--including Pulitzer-Prize winner John Lewis Gaddis and Nobel laureate Murray Gell-Mann--debate these complex questions in this thoughtful collection of essays.
Complexity
Author: Melanie Mitchell
Publisher: Oxford University Press
ISBN: 0199741026
Category : Science
Languages : en
Pages : 367
Book Description
What enables individually simple insects like ants to act with such precision and purpose as a group? How do trillions of neurons produce something as extraordinarily complex as consciousness? In this remarkably clear and companionable book, leading complex systems scientist Melanie Mitchell provides an intimate tour of the sciences of complexity, a broad set of efforts that seek to explain how large-scale complex, organized, and adaptive behavior can emerge from simple interactions among myriad individuals. Based on her work at the Santa Fe Institute and drawing on its interdisciplinary strategies, Mitchell brings clarity to the workings of complexity across a broad range of biological, technological, and social phenomena, seeking out the general principles or laws that apply to all of them. Richly illustrated, Complexity: A Guided Tour--winner of the 2010 Phi Beta Kappa Book Award in Science--offers a wide-ranging overview of the ideas underlying complex systems science, the current research at the forefront of this field, and the prospects for its contribution to solving some of the most important scientific questions of our time.
Publisher: Oxford University Press
ISBN: 0199741026
Category : Science
Languages : en
Pages : 367
Book Description
What enables individually simple insects like ants to act with such precision and purpose as a group? How do trillions of neurons produce something as extraordinarily complex as consciousness? In this remarkably clear and companionable book, leading complex systems scientist Melanie Mitchell provides an intimate tour of the sciences of complexity, a broad set of efforts that seek to explain how large-scale complex, organized, and adaptive behavior can emerge from simple interactions among myriad individuals. Based on her work at the Santa Fe Institute and drawing on its interdisciplinary strategies, Mitchell brings clarity to the workings of complexity across a broad range of biological, technological, and social phenomena, seeking out the general principles or laws that apply to all of them. Richly illustrated, Complexity: A Guided Tour--winner of the 2010 Phi Beta Kappa Book Award in Science--offers a wide-ranging overview of the ideas underlying complex systems science, the current research at the forefront of this field, and the prospects for its contribution to solving some of the most important scientific questions of our time.
The Return of Science
Author: Philip Pomper
Publisher: Rowman & Littlefield
ISBN: 9780742521612
Category : History
Languages : en
Pages : 324
Book Description
In this collection of essays, historians discuss the applications of evolutionary theory to cultural, social, economic and political phenomena. William H. McNeill presents a magisterial statement about the convergence of the sciences toward an evolutionary worldview. Several contributors offer support for this thesis. Anthropologist Donald Brown and archaeologist Albert Naccache bring together the realms of biology and culture in examinations of evolved human features and modes of evolution. Demographer Noel Bonneuil and neuroscientist Alonso Pena apply mathematics to historical evolutionary processes such as the decision-making of human agents and cultural diffusion.
Publisher: Rowman & Littlefield
ISBN: 9780742521612
Category : History
Languages : en
Pages : 324
Book Description
In this collection of essays, historians discuss the applications of evolutionary theory to cultural, social, economic and political phenomena. William H. McNeill presents a magisterial statement about the convergence of the sciences toward an evolutionary worldview. Several contributors offer support for this thesis. Anthropologist Donald Brown and archaeologist Albert Naccache bring together the realms of biology and culture in examinations of evolved human features and modes of evolution. Demographer Noel Bonneuil and neuroscientist Alonso Pena apply mathematics to historical evolutionary processes such as the decision-making of human agents and cultural diffusion.
New Synthetic Technologies in Medicinal Chemistry
Author: Elizabeth Farrant
Publisher: Royal Society of Chemistry
ISBN: 1849733058
Category : Medical
Languages : en
Pages : 177
Book Description
The modern synthetic chemist applies all the tools available to identify the drug-like molecules with the best chances of becoming novel drugs. This book will act as a primer for graduates and postgraduates interested in a career in drug discovery. It covers both synthetic technologies currently impacting medicinal chemistry and emerging areas. The chapters focus on topics including: parallel medicinal chemistry; solid supported reagents; microwave assisted chemistry; flow synthesis, and high throughput reaction screening.
Publisher: Royal Society of Chemistry
ISBN: 1849733058
Category : Medical
Languages : en
Pages : 177
Book Description
The modern synthetic chemist applies all the tools available to identify the drug-like molecules with the best chances of becoming novel drugs. This book will act as a primer for graduates and postgraduates interested in a career in drug discovery. It covers both synthetic technologies currently impacting medicinal chemistry and emerging areas. The chapters focus on topics including: parallel medicinal chemistry; solid supported reagents; microwave assisted chemistry; flow synthesis, and high throughput reaction screening.
Modern Inorganic Synthetic Chemistry
Author: Ruren Xu
Publisher: Elsevier
ISBN: 0444535993
Category : Science
Languages : en
Pages : 612
Book Description
The contributors to this book discuss inorganic synthesis reactions, dealing with inorganic synthesis and preparative chemistry under specific conditions. They go on to describe the synthesis, preparation and assembly of six important categories of compounds with wide coverage of distinct synthetic chemistry systems
Publisher: Elsevier
ISBN: 0444535993
Category : Science
Languages : en
Pages : 612
Book Description
The contributors to this book discuss inorganic synthesis reactions, dealing with inorganic synthesis and preparative chemistry under specific conditions. They go on to describe the synthesis, preparation and assembly of six important categories of compounds with wide coverage of distinct synthetic chemistry systems