Proceedings of the International Congress of Mathematicians

Proceedings of the International Congress of Mathematicians PDF Author: S.D. Chatterji
Publisher: Birkhäuser
ISBN: 3034890788
Category : Mathematics
Languages : en
Pages : 1669

Get Book Here

Book Description
Since the first ICM was held in Zürich in 1897, it has become the pinnacle of mathematical gatherings. It aims at giving an overview of the current state of different branches of mathematics and its applications as well as an insight into the treatment of special problems of exceptional importance. The proceedings of the ICMs have provided a rich chronology of mathematical development in all its branches and a unique documentation of contemporary research. They form an indispensable part of every mathematical library. The Proceedings of the International Congress of Mathematicians 1994, held in Zürich from August 3rd to 11th, 1994, are published in two volumes. Volume I contains an account of the organization of the Congress, the list of ordinary members, the reports on the work of the Fields Medalists and the Nevanlinna Prize Winner, the plenary one-hour addresses, and the invited addresses presented at Section Meetings 1 - 6. Volume II contains the invited address for Section Meetings 7 - 19. A complete author index is included in both volumes. '...the content of these impressive two volumes sheds a certain light on the present state of mathematical sciences and anybody doing research in mathematics should look carefully at these Proceedings. For young people beginning research, this is even more important, so these are a must for any serious mathematics library. The graphical presentation is, as always with Birkhäuser, excellent....' (Revue Roumaine de Mathematiques pures et Appliquées)

Proceedings of the International Congress of Mathematicians

Proceedings of the International Congress of Mathematicians PDF Author: S.D. Chatterji
Publisher: Birkhäuser
ISBN: 3034890788
Category : Mathematics
Languages : en
Pages : 1669

Get Book Here

Book Description
Since the first ICM was held in Zürich in 1897, it has become the pinnacle of mathematical gatherings. It aims at giving an overview of the current state of different branches of mathematics and its applications as well as an insight into the treatment of special problems of exceptional importance. The proceedings of the ICMs have provided a rich chronology of mathematical development in all its branches and a unique documentation of contemporary research. They form an indispensable part of every mathematical library. The Proceedings of the International Congress of Mathematicians 1994, held in Zürich from August 3rd to 11th, 1994, are published in two volumes. Volume I contains an account of the organization of the Congress, the list of ordinary members, the reports on the work of the Fields Medalists and the Nevanlinna Prize Winner, the plenary one-hour addresses, and the invited addresses presented at Section Meetings 1 - 6. Volume II contains the invited address for Section Meetings 7 - 19. A complete author index is included in both volumes. '...the content of these impressive two volumes sheds a certain light on the present state of mathematical sciences and anybody doing research in mathematics should look carefully at these Proceedings. For young people beginning research, this is even more important, so these are a must for any serious mathematics library. The graphical presentation is, as always with Birkhäuser, excellent....' (Revue Roumaine de Mathematiques pures et Appliquées)

Elements of Classical and Quantum Integrable Systems

Elements of Classical and Quantum Integrable Systems PDF Author: Gleb Arutyunov
Publisher: Springer
ISBN: 303024198X
Category : Science
Languages : en
Pages : 420

Get Book Here

Book Description
Integrable models have a fascinating history with many important discoveries that dates back to the famous Kepler problem of planetary motion. Nowadays it is well recognised that integrable systems play a ubiquitous role in many research areas ranging from quantum field theory, string theory, solvable models of statistical mechanics, black hole physics, quantum chaos and the AdS/CFT correspondence, to pure mathematics, such as representation theory, harmonic analysis, random matrix theory and complex geometry. Starting with the Liouville theorem and finite-dimensional integrable models, this book covers the basic concepts of integrability including elements of the modern geometric approach based on Poisson reduction, classical and quantum factorised scattering and various incarnations of the Bethe Ansatz. Applications of integrability methods are illustrated in vast detail on the concrete examples of the Calogero-Moser-Sutherland and Ruijsenaars-Schneider models, the Heisenberg spin chain and the one-dimensional Bose gas interacting via a delta-function potential. This book has intermediate and advanced topics with details to make them clearly comprehensible.

Symmetries, Integrable Systems and Representations

Symmetries, Integrable Systems and Representations PDF Author: Kenji Iohara
Publisher: Springer Science & Business Media
ISBN: 1447148630
Category : Mathematics
Languages : en
Pages : 633

Get Book Here

Book Description
This volume is the result of two international workshops; Infinite Analysis 11 – Frontier of Integrability – held at University of Tokyo, Japan in July 25th to 29th, 2011, and Symmetries, Integrable Systems and Representations held at Université Claude Bernard Lyon 1, France in December 13th to 16th, 2011. Included are research articles based on the talks presented at the workshops, latest results obtained thereafter, and some review articles. The subjects discussed range across diverse areas such as algebraic geometry, combinatorics, differential equations, integrable systems, representation theory, solvable lattice models and special functions. Through these topics, the reader will find some recent developments in the field of mathematical physics and their interactions with several other domains.

An Introduction to Integrable Techniques for One-Dimensional Quantum Systems

An Introduction to Integrable Techniques for One-Dimensional Quantum Systems PDF Author: Fabio Franchini
Publisher: Springer
ISBN: 3319484877
Category : Science
Languages : en
Pages : 186

Get Book Here

Book Description
This book introduces the reader to basic notions of integrable techniques for one-dimensional quantum systems. In a pedagogical way, a few examples of exactly solvable models are worked out to go from the coordinate approach to the Algebraic Bethe Ansatz, with some discussion on the finite temperature thermodynamics. The aim is to provide the instruments to approach more advanced books or to allow for a critical reading of research articles and the extraction of useful information from them. We describe the solution of the anisotropic XY spin chain; of the Lieb-Liniger model of bosons with contact interaction at zero and finite temperature; and of the XXZ spin chain, first in the coordinate and then in the algebraic approach. To establish the connection between the latter and the solution of two dimensional classical models, we also introduce and solve the 6-vertex model. Finally, the low energy physics of these integrable models is mapped into the corresponding conformal field theory. Through its style and the choice of topics, this book tries to touch all fundamental ideas behind integrability and is meant for students and researchers interested either in an introduction to later delve in the advance aspects of Bethe Ansatz or in an overview of the topic for broadening their culture.

Calogero—Moser— Sutherland Models

Calogero—Moser— Sutherland Models PDF Author: Jan F. van Diejen
Publisher: Springer Science & Business Media
ISBN: 1461212065
Category : Science
Languages : en
Pages : 572

Get Book Here

Book Description
In the 1970s F. Calogero and D. Sutherland discovered that for certain potentials in one-dimensional systems, but for any number of particles, the Schrödinger eigenvalue problem is exactly solvable. Until then, there was only one known nontrivial example of an exactly solvable quantum multi-particle problem. J. Moser subsequently showed that the classical counterparts to these models is also amenable to an exact analytical approach. The last decade has witnessed a true explosion of activities involving Calogero-Moser-Sutherland models, and these now play a role in research areas ranging from theoretical physics (such as soliton theory, quantum field theory, string theory, solvable models of statistical mechanics, condensed matter physics, and quantum chaos) to pure mathematics (such as representation theory, harmonic analysis, theory of special functions, combinatorics of symmetric functions, dynamical systems, random matrix theory, and complex geometry). The aim of this volume is to provide an overview of the many branches into which research on CMS systems has diversified in recent years. The contributions are by leading researchers from various disciplines in whose work CMS systems appear, either as the topic of investigation itself or as a tool for further applications.

Integrable Systems in Celestial Mechanics

Integrable Systems in Celestial Mechanics PDF Author: Diarmuid Ó'Mathúna
Publisher: Springer Science & Business Media
ISBN: 0817645950
Category : Science
Languages : en
Pages : 241

Get Book Here

Book Description
Shows that exact solutions to the Kepler (two-body), the Euler (two-fixed center), and the Vinti (earth-satellite) problems can all be put in a form that admits the general representation of the orbits and follows a definite shared pattern Includes a full analysis of the planar Euler problem via a clear generalization of the form of the solution in the Kepler case Original insights that have hithertofore not appeared in book form

Integrable Systems

Integrable Systems PDF Author: V. Babelon
Publisher: Springer Science & Business Media
ISBN: 1461203155
Category : Mathematics
Languages : en
Pages : 368

Get Book Here

Book Description
This book constitutes the proceedings of the International Conference on Integrable Systems in memory of J.-L. Verdier. It was held on July 1-5, 1991 at the Centre International de Recherches Mathematiques (C.I.R.M.) at Luminy, near Marseille (France). This collection of articles, covering many aspects of the theory of integrable Hamiltonian systems, both finite and infinite-dimensional, with an emphasis on the algebro-geometric meth ods, is published here as a tribute to Verdier who had planned this confer ence before his death in 1989 and whose active involvement with this topic brought integrable systems to the fore as a subject for active research in France. The death of Verdier and his wife on August 25, 1989, in a car accident near their country house, was a shock to all of us who were acquainted with them, and was very deeply felt in the mathematics community. We knew of no better way to honor Verdier's memory than to proceed with both the School on Integrable Systems at the C.I.M.P.A. (Centre International de Mathematiques Pures et Appliquees in Nice), and the Conference on the same theme that was to follow it, as he himself had planned them.

Discrete Integrable Systems

Discrete Integrable Systems PDF Author: Basil Grammaticos
Publisher:
ISBN: 9783662144602
Category :
Languages : en
Pages : 460

Get Book Here

Book Description


Sixteenth International Congress on Mathematical Physics

Sixteenth International Congress on Mathematical Physics PDF Author: Pavel Exner
Publisher: World Scientific
ISBN: 981430462X
Category : Science
Languages : en
Pages : 709

Get Book Here

Book Description
The International Congress on Mathematical Physics is the flagship conference in this exciting field. Convening every three years, it gives a survey on the progress achieved in all branches of mathematical physics. It also provides a superb platform to discuss challenges and new ideas. The present volume collects material from the XVIth ICMP which was held in Prague, August 2009, and features most of the plenary lectures and invited lectures in topical sessions as well as information on other parts of the congress program. This volume provides a broad coverage of the field of mathematical physics, from dominantly mathematical subjects to particle physics, condensed matter, and application of mathematical physics methods in various areas such as astrophysics and ecology, amongst others.

Seiberg-Witten Theory and Integrable Systems

Seiberg-Witten Theory and Integrable Systems PDF Author: Andrei Marshakov
Publisher: World Scientific
ISBN: 9789810236366
Category : Science
Languages : en
Pages : 268

Get Book Here

Book Description
In the past few decades many attempts have been made to search for a consistent formulation of quantum field theory beyond perturbation theory. One of the most interesting examples is the Seiberg-Witten ansatz for the N=2 SUSY supersymmetric Yang-Mills gauge theories in four dimensions. The aim of this book is to present in a clear form the main ideas of the relation between the exact solutions to the supersymmetric (SUSY) Yang-Mills theories and integrable systems. This relation is a beautiful example of reformulation of close-to-realistic physical theory in terms widely known in mathematical physics ? systems of integrable nonlinear differential equations and their algebro-geometric solutions.First, the book reviews what is known about the physical problem: the construction of low-energy effective actions for the N=2 Yang-Mills theories from the traditional viewpoint of quantum field theory. Then the necessary background information from the theory of integrable systems is presented. In particular the author considers the definition of the algebro-geometric solutions to integrable systems in terms of complex curves or Riemann surfaces and the generating meromorphic 1-form. These definitions are illustrated in detail on the basic example of the periodic Toda chain.Several ?toy-model? examples of string theory solutions where the structures of integrable systems appear are briefly discussed. Then the author proceeds to the Seiberg-Witten solutions and show that they are indeed defined by the same data as finite-gap solutions to integrable systems. The complete formulation requires the introduction of certain deformations of the finite-gap solutions described in terms of quasiclassical or Whitham hierarchies. The explicit differential equations and direct computations of the prepotential of the effective theory are presented and compared when possible with the well-known computations from supersymmetric quantum gauge theories.Finally, the book discusses the properties of the exact solutions to SUSY Yang-Mills theories and their relation to integrable systems in the general context of the modern approach to nonperturbative string or M-theory.