Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations

Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations PDF Author: Beatrice Riviere
Publisher: SIAM
ISBN: 089871656X
Category : Mathematics
Languages : en
Pages : 201

Get Book Here

Book Description
Focuses on three primal DG methods, covering both theory and computation, and providing the basic tools for analysis.

Elliptic and Parabolic Methods in Geometry

Elliptic and Parabolic Methods in Geometry PDF Author: Ben Chow
Publisher: CRC Press
ISBN: 1439864519
Category : Mathematics
Languages : en
Pages : 212

Get Book Here

Book Description
This book documents the results of a workshop held at the Geometry Center (University of Minnesota, Minneapolis) and captures the excitement of the week.

Partial Differential Equations 2

Partial Differential Equations 2 PDF Author: Friedrich Sauvigny
Publisher: Springer Science & Business Media
ISBN: 3540344624
Category : Mathematics
Languages : en
Pages : 401

Get Book Here

Book Description
This encyclopedic work covers the whole area of Partial Differential Equations - of the elliptic, parabolic, and hyperbolic type - in two and several variables. Emphasis is placed on the connection of PDEs and complex variable methods. This second volume addresses Solvability of operator equations in Banach spaces; Linear operators in Hilbert spaces and spectral theory; Schauder's theory of linear elliptic differential equations; Weak solutions of differential equations; Nonlinear partial differential equations and characteristics; Nonlinear elliptic systems with differential-geometric applications. While partial differential equations are solved via integral representations in the preceding volume, this volume uses functional analytic solution methods.

Geometric Methods in PDE’s

Geometric Methods in PDE’s PDF Author: Giovanna Citti
Publisher: Springer
ISBN: 3319026666
Category : Mathematics
Languages : en
Pages : 381

Get Book Here

Book Description
The analysis of PDEs is a prominent discipline in mathematics research, both in terms of its theoretical aspects and its relevance in applications. In recent years, the geometric properties of linear and nonlinear second order PDEs of elliptic and parabolic type have been extensively studied by many outstanding researchers. This book collects contributions from a selected group of leading experts who took part in the INdAM meeting "Geometric methods in PDEs", on the occasion of the 70th birthday of Ermanno Lanconelli. They describe a number of new achievements and/or the state of the art in their discipline of research, providing readers an overview of recent progress and future research trends in PDEs. In particular, the volume collects significant results for sub-elliptic equations, potential theory and diffusion equations, with an emphasis on comparing different methodologies and on their implications for theory and applications.

Nonlinear Parabolic and Elliptic Equations

Nonlinear Parabolic and Elliptic Equations PDF Author: C.V. Pao
Publisher: Springer Science & Business Media
ISBN: 1461530342
Category : Mathematics
Languages : en
Pages : 786

Get Book Here

Book Description
In response to the growing use of reaction diffusion problems in many fields, this monograph gives a systematic treatment of a class of nonlinear parabolic and elliptic differential equations and their applications these problems. It is an important reference for mathematicians and engineers, as well as a practical text for graduate students.

Numerical Methods for Elliptic and Parabolic Partial Differential Equations

Numerical Methods for Elliptic and Parabolic Partial Differential Equations PDF Author: Peter Knabner
Publisher: Springer Science & Business Media
ISBN: 038795449X
Category : Mathematics
Languages : en
Pages : 437

Get Book Here

Book Description
This text provides an application oriented introduction to the numerical methods for partial differential equations. It covers finite difference, finite element, and finite volume methods, interweaving theory and applications throughout. The book examines modern topics such as adaptive methods, multilevel methods, and methods for convection-dominated problems and includes detailed illustrations and extensive exercises.

Monge Ampere Equation: Applications to Geometry and Optimization

Monge Ampere Equation: Applications to Geometry and Optimization PDF Author: Luis A. Caffarelli
Publisher: American Mathematical Soc.
ISBN: 0821809172
Category : Mathematics
Languages : en
Pages : 186

Get Book Here

Book Description
In recent years, the Monge Ampère Equation has received attention for its role in several new areas of applied mathematics: as a new method of discretization for evolution equations of classical mechanics, such as the Euler equation, flow in porous media, Hele-Shaw flow, etc.; as a simple model for optimal transportation and a div-curl decomposition with affine invariance; and as a model for front formation in meteorology and optimal antenna design. These applications were addressed and important theoretical advances presented at a NSF-CBMS conference held at Florida Atlantic University (Boca Raton). L. Cafarelli and other distinguished specialists contributed high-quality research results and up-to-date developments in the field. This is a comprehensive volume outlining current directions in nonlinear analysis and its applications.

Nonlinear Methods in Riemannian and Kählerian Geometry

Nonlinear Methods in Riemannian and Kählerian Geometry PDF Author: J. Jost
Publisher: Birkhäuser
ISBN: 3034876904
Category : Science
Languages : en
Pages : 153

Get Book Here

Book Description
In this book, I present an expanded version of the contents of my lectures at a Seminar of the DMV (Deutsche Mathematiker Vereinigung) in Diisseldorf, June, 1986. The title "Nonlinear methods in complex geometry" already indicates a combination of techniques from nonlinear partial differential equations and geometric concepts. In older geometric investigations, usually the local aspects attracted more attention than the global ones as differential geometry in its foundations provides approximations of local phenomena through infinitesimal or differential constructions. Here, all equations are linear. If one wants to consider global aspects, however, usually the presence of curvature leads to a nonlinearity in the equations. The simplest case is the one of geodesics which are described by a system of second order nonlinear ODE; their linearizations are the Jacobi fields. More recently, nonlinear PDE played a more and more prominent role in geometry. Let us list some of the most important ones: - harmonic maps between Riemannian and Kahlerian manifolds - minimal surfaces in Riemannian manifolds - Monge-Ampere equations on Kahler manifolds - Yang-Mills equations in vector bundles over manifolds. While the solution of these equations usually is nontrivial, it can lead to very signifi cant results in geometry, as solutions provide maps, submanifolds, metrics, or connections which are distinguished by geometric properties in a given context. All these equations are elliptic, but often parabolic equations are used as an auxiliary tool to solve the elliptic ones.

Nonlinear Methods in Riemannian and Kählerian Geometry

Nonlinear Methods in Riemannian and Kählerian Geometry PDF Author: Jürgen Jost
Publisher: Birkhäuser
ISBN: 3034877064
Category : Mathematics
Languages : en
Pages : 155

Get Book Here

Book Description
In this book, I present an expanded version of the contents of my lectures at a Seminar of the DMV (Deutsche Mathematiker Vereinigung) in Düsseldorf, June, 1986. The title "Nonlinear methods in complex geometry" already indicates a combination of techniques from nonlinear partial differential equations and geometric concepts. In older geometric investigations, usually the local aspects attracted more attention than the global ones as differential geometry in its foundations provides approximations of local phenomena through infinitesimal or differential constructions. Here, all equations are linear. If one wants to consider global aspects, however, usually the presence of curvature Ieads to a nonlinearity in the equations. The simplest case is the one of geodesics which are described by a system of second ordernonlinear ODE; their linearizations are the Jacobi fields. More recently, nonlinear PDE played a more and more pro~inent röle in geometry. Let us Iist some of the most important ones: - harmonic maps between Riemannian and Kählerian manifolds - minimal surfaces in Riemannian manifolds - Monge-Ampere equations on Kähler manifolds - Yang-Mills equations in vector bundles over manifolds. While the solution of these equations usually is nontrivial, it can Iead to very signifi cant results in geometry, as solutions provide maps, submanifolds, metrics, or connections which are distinguished by geometric properties in a given context. All these equations are elliptic, but often parabolic equations are used as an auxiliary tool to solve the elliptic ones.

Elliptic & Parabolic Equations

Elliptic & Parabolic Equations PDF Author: Zhuoqun Wu
Publisher: World Scientific
ISBN: 9812700250
Category : Mathematics
Languages : en
Pages : 428

Get Book Here

Book Description
This book provides an introduction to elliptic and parabolic equations. While there are numerous monographs focusing separately on each kind of equations, there are very few books treating these two kinds of equations in combination. This book presents the related basic theories and methods to enable readers to appreciate the commonalities between these two kinds of equations as well as contrast the similarities and differences between them.