Author: V. Bykov
Publisher: Springer Science & Business Media
ISBN: 9401153027
Category : Mathematics
Languages : en
Pages : 254
Book Description
The subject of this book is connected with a new direction in mathematics, which has been actively developed over the last few years, namely the field of polynomial computer algebra, which lies at the intersection point of algebra, mathematical analysis and programming. There were several incentives to write the book. First of all, there has lately been a considerable interest in applied nonlinear problems characterized by multiple sta tionary states. Practical needs have then in their turn led to the appearance of new theoretical results in the analysis of systems of nonlinear algebraic equations. And finally, the introduction of various computer packages for analytic manipulations has made it possible to use complicated elimination-theoretical algorithms in prac tical research. The structure of the book is accordingly represented by three main parts: Mathematical results driven to constructive algorithms, computer algebra realizations of these algorithms, and applications. Nonlinear systems of algebraic equations arise in diverse fields of science. In particular, for processes described by systems of differential equations with a poly nomial right hand side one is faced with the problem of determining the number (and location) of the stationary states in certain sets.
Elimination Methods in Polynomial Computer Algebra
Author: V. Bykov
Publisher: Springer Science & Business Media
ISBN: 9401153027
Category : Mathematics
Languages : en
Pages : 254
Book Description
The subject of this book is connected with a new direction in mathematics, which has been actively developed over the last few years, namely the field of polynomial computer algebra, which lies at the intersection point of algebra, mathematical analysis and programming. There were several incentives to write the book. First of all, there has lately been a considerable interest in applied nonlinear problems characterized by multiple sta tionary states. Practical needs have then in their turn led to the appearance of new theoretical results in the analysis of systems of nonlinear algebraic equations. And finally, the introduction of various computer packages for analytic manipulations has made it possible to use complicated elimination-theoretical algorithms in prac tical research. The structure of the book is accordingly represented by three main parts: Mathematical results driven to constructive algorithms, computer algebra realizations of these algorithms, and applications. Nonlinear systems of algebraic equations arise in diverse fields of science. In particular, for processes described by systems of differential equations with a poly nomial right hand side one is faced with the problem of determining the number (and location) of the stationary states in certain sets.
Publisher: Springer Science & Business Media
ISBN: 9401153027
Category : Mathematics
Languages : en
Pages : 254
Book Description
The subject of this book is connected with a new direction in mathematics, which has been actively developed over the last few years, namely the field of polynomial computer algebra, which lies at the intersection point of algebra, mathematical analysis and programming. There were several incentives to write the book. First of all, there has lately been a considerable interest in applied nonlinear problems characterized by multiple sta tionary states. Practical needs have then in their turn led to the appearance of new theoretical results in the analysis of systems of nonlinear algebraic equations. And finally, the introduction of various computer packages for analytic manipulations has made it possible to use complicated elimination-theoretical algorithms in prac tical research. The structure of the book is accordingly represented by three main parts: Mathematical results driven to constructive algorithms, computer algebra realizations of these algorithms, and applications. Nonlinear systems of algebraic equations arise in diverse fields of science. In particular, for processes described by systems of differential equations with a poly nomial right hand side one is faced with the problem of determining the number (and location) of the stationary states in certain sets.
Elimination Methods
Author: D. Wang
Publisher: Springer Science & Business Media
ISBN: 9783211832417
Category : Computers
Languages : en
Pages : 268
Book Description
This book provides a systematic and uniform presentation of elimination methods and the underlying theories, along the central line of decomposing arbitrary systems of polynomials into triangular systems of various kinds. Highlighting methods based on triangular sets, the book also covers the theory and techniques of resultants and Gröbner bases. The methods and their efficiency are illustrated by fully worked out examples and their applications to selected problems such as from polynomial ideal theory, automated theorem proving in geometry and the qualitative study of differential equations. The reader will find the formally described algorithms ready for immediate implementation and applicable to many other problems. Suitable as a graduate text, this book offers an indispensable reference for everyone interested in mathematical computation, computer algebra (software), and systems of algebraic equations.
Publisher: Springer Science & Business Media
ISBN: 9783211832417
Category : Computers
Languages : en
Pages : 268
Book Description
This book provides a systematic and uniform presentation of elimination methods and the underlying theories, along the central line of decomposing arbitrary systems of polynomials into triangular systems of various kinds. Highlighting methods based on triangular sets, the book also covers the theory and techniques of resultants and Gröbner bases. The methods and their efficiency are illustrated by fully worked out examples and their applications to selected problems such as from polynomial ideal theory, automated theorem proving in geometry and the qualitative study of differential equations. The reader will find the formally described algorithms ready for immediate implementation and applicable to many other problems. Suitable as a graduate text, this book offers an indispensable reference for everyone interested in mathematical computation, computer algebra (software), and systems of algebraic equations.
Elimination Methods in Polynomial Computer Algebra
Author: V Bykov
Publisher:
ISBN: 9789401153034
Category :
Languages : en
Pages : 260
Book Description
Publisher:
ISBN: 9789401153034
Category :
Languages : en
Pages : 260
Book Description
Computer Algebra Methods for Equivariant Dynamical Systems
Author: Karin Gatermann
Publisher: Springer
ISBN: 3540465197
Category : Mathematics
Languages : en
Pages : 163
Book Description
This book starts with an overview of the research of Gröbner bases which have many applications in various areas of mathematics since they are a general tool for the investigation of polynomial systems. The next chapter describes algorithms in invariant theory including many examples and time tables. These techniques are applied in the chapters on symmetric bifurcation theory and equivariant dynamics. This combination of different areas of mathematics will be interesting to researchers in computational algebra and/or dynamics.
Publisher: Springer
ISBN: 3540465197
Category : Mathematics
Languages : en
Pages : 163
Book Description
This book starts with an overview of the research of Gröbner bases which have many applications in various areas of mathematics since they are a general tool for the investigation of polynomial systems. The next chapter describes algorithms in invariant theory including many examples and time tables. These techniques are applied in the chapters on symmetric bifurcation theory and equivariant dynamics. This combination of different areas of mathematics will be interesting to researchers in computational algebra and/or dynamics.
Polynomial Algorithms in Computer Algebra
Author: Franz Winkler
Publisher: Springer Science & Business Media
ISBN: 3709165717
Category : Mathematics
Languages : en
Pages : 284
Book Description
For several years now I have been teaching courses in computer algebra at the Universitat Linz, the University of Delaware, and the Universidad de Alcala de Henares. In the summers of 1990 and 1992 I have organized and taught summer schools in computer algebra at the Universitat Linz. Gradually a set of course notes has emerged from these activities. People have asked me for copies of the course notes, and different versions of them have been circulating for a few years. Finally I decided that I should really take the time to write the material up in a coherent way and make a book out of it. Here, now, is the result of this work. Over the years many students have been helpful in improving the quality of the notes, and also several colleagues at Linz and elsewhere have contributed to it. I want to thank them all for their effort, in particular I want to thank B. Buchberger, who taught me the theory of Grabner bases nearly two decades ago, B. F. Caviness and B. D. Saunders, who first stimulated my interest in various problems in computer algebra, G. E. Collins, who showed me how to compute in algebraic domains, and J. R. Sendra, with whom I started to apply computer algebra methods to problems in algebraic geometry. Several colleagues have suggested improvements in earlier versions of this book. However, I want to make it clear that I am responsible for all remaining mistakes.
Publisher: Springer Science & Business Media
ISBN: 3709165717
Category : Mathematics
Languages : en
Pages : 284
Book Description
For several years now I have been teaching courses in computer algebra at the Universitat Linz, the University of Delaware, and the Universidad de Alcala de Henares. In the summers of 1990 and 1992 I have organized and taught summer schools in computer algebra at the Universitat Linz. Gradually a set of course notes has emerged from these activities. People have asked me for copies of the course notes, and different versions of them have been circulating for a few years. Finally I decided that I should really take the time to write the material up in a coherent way and make a book out of it. Here, now, is the result of this work. Over the years many students have been helpful in improving the quality of the notes, and also several colleagues at Linz and elsewhere have contributed to it. I want to thank them all for their effort, in particular I want to thank B. Buchberger, who taught me the theory of Grabner bases nearly two decades ago, B. F. Caviness and B. D. Saunders, who first stimulated my interest in various problems in computer algebra, G. E. Collins, who showed me how to compute in algebraic domains, and J. R. Sendra, with whom I started to apply computer algebra methods to problems in algebraic geometry. Several colleagues have suggested improvements in earlier versions of this book. However, I want to make it clear that I am responsible for all remaining mistakes.
Algorithms for Computer Algebra
Author: Keith O. Geddes
Publisher: Springer Science & Business Media
ISBN: 0585332479
Category : Computers
Languages : en
Pages : 594
Book Description
Algorithms for Computer Algebra is the first comprehensive textbook to be published on the topic of computational symbolic mathematics. The book first develops the foundational material from modern algebra that is required for subsequent topics. It then presents a thorough development of modern computational algorithms for such problems as multivariate polynomial arithmetic and greatest common divisor calculations, factorization of multivariate polynomials, symbolic solution of linear and polynomial systems of equations, and analytic integration of elementary functions. Numerous examples are integrated into the text as an aid to understanding the mathematical development. The algorithms developed for each topic are presented in a Pascal-like computer language. An extensive set of exercises is presented at the end of each chapter. Algorithms for Computer Algebra is suitable for use as a textbook for a course on algebraic algorithms at the third-year, fourth-year, or graduate level. Although the mathematical development uses concepts from modern algebra, the book is self-contained in the sense that a one-term undergraduate course introducing students to rings and fields is the only prerequisite assumed. The book also serves well as a supplementary textbook for a traditional modern algebra course, by presenting concrete applications to motivate the understanding of the theory of rings and fields.
Publisher: Springer Science & Business Media
ISBN: 0585332479
Category : Computers
Languages : en
Pages : 594
Book Description
Algorithms for Computer Algebra is the first comprehensive textbook to be published on the topic of computational symbolic mathematics. The book first develops the foundational material from modern algebra that is required for subsequent topics. It then presents a thorough development of modern computational algorithms for such problems as multivariate polynomial arithmetic and greatest common divisor calculations, factorization of multivariate polynomials, symbolic solution of linear and polynomial systems of equations, and analytic integration of elementary functions. Numerous examples are integrated into the text as an aid to understanding the mathematical development. The algorithms developed for each topic are presented in a Pascal-like computer language. An extensive set of exercises is presented at the end of each chapter. Algorithms for Computer Algebra is suitable for use as a textbook for a course on algebraic algorithms at the third-year, fourth-year, or graduate level. Although the mathematical development uses concepts from modern algebra, the book is self-contained in the sense that a one-term undergraduate course introducing students to rings and fields is the only prerequisite assumed. The book also serves well as a supplementary textbook for a traditional modern algebra course, by presenting concrete applications to motivate the understanding of the theory of rings and fields.
Quantifier Elimination and Cylindrical Algebraic Decomposition
Author: Bob F. Caviness
Publisher: Springer Science & Business Media
ISBN: 3709194598
Category : Computers
Languages : en
Pages : 455
Book Description
George Collins’ discovery of Cylindrical Algebraic Decomposition (CAD) as a method for Quantifier Elimination (QE) for the elementary theory of real closed fields brought a major breakthrough in automating mathematics with recent important applications in high-tech areas (e.g. robot motion), also stimulating fundamental research in computer algebra over the past three decades. This volume is a state-of-the-art collection of important papers on CAD and QE and on the related area of algorithmic aspects of real geometry. It contains papers from a symposium held in Linz in 1993, reprints of seminal papers from the area including Tarski’s landmark paper as well as a survey outlining the developments in CAD based QE that have taken place in the last twenty years.
Publisher: Springer Science & Business Media
ISBN: 3709194598
Category : Computers
Languages : en
Pages : 455
Book Description
George Collins’ discovery of Cylindrical Algebraic Decomposition (CAD) as a method for Quantifier Elimination (QE) for the elementary theory of real closed fields brought a major breakthrough in automating mathematics with recent important applications in high-tech areas (e.g. robot motion), also stimulating fundamental research in computer algebra over the past three decades. This volume is a state-of-the-art collection of important papers on CAD and QE and on the related area of algorithmic aspects of real geometry. It contains papers from a symposium held in Linz in 1993, reprints of seminal papers from the area including Tarski’s landmark paper as well as a survey outlining the developments in CAD based QE that have taken place in the last twenty years.
Solving Polynomial Equations
Author: Alicia Dickenstein
Publisher: Springer Science & Business Media
ISBN: 3540243267
Category : Computers
Languages : en
Pages : 433
Book Description
This book provides a general introduction to modern mathematical aspects in computing with multivariate polynomials and in solving algebraic systems. It presents the state of the art in several symbolic, numeric, and symbolic-numeric techniques, including effective and algorithmic methods in algebraic geometry and computational algebra, complexity issues, and applications ranging from statistics and geometric modelling to robotics and vision. Graduate students, as well as researchers in related areas, will find an excellent introduction to currently interesting topics. These cover Groebner and border bases, multivariate resultants, residues, primary decomposition, multivariate polynomial factorization, homotopy continuation, complexity issues, and their applications.
Publisher: Springer Science & Business Media
ISBN: 3540243267
Category : Computers
Languages : en
Pages : 433
Book Description
This book provides a general introduction to modern mathematical aspects in computing with multivariate polynomials and in solving algebraic systems. It presents the state of the art in several symbolic, numeric, and symbolic-numeric techniques, including effective and algorithmic methods in algebraic geometry and computational algebra, complexity issues, and applications ranging from statistics and geometric modelling to robotics and vision. Graduate students, as well as researchers in related areas, will find an excellent introduction to currently interesting topics. These cover Groebner and border bases, multivariate resultants, residues, primary decomposition, multivariate polynomial factorization, homotopy continuation, complexity issues, and their applications.
Computer Algebra Handbook
Author: Johannes Grabmeier
Publisher: Springer Science & Business Media
ISBN: 3642558267
Category : Computers
Languages : en
Pages : 656
Book Description
This Handbook gives a comprehensive snapshot of a field at the intersection of mathematics and computer science with applications in physics, engineering and education. Reviews 67 software systems and offers 100 pages on applications in physics, mathematics, computer science, engineering chemistry and education.
Publisher: Springer Science & Business Media
ISBN: 3642558267
Category : Computers
Languages : en
Pages : 656
Book Description
This Handbook gives a comprehensive snapshot of a field at the intersection of mathematics and computer science with applications in physics, engineering and education. Reviews 67 software systems and offers 100 pages on applications in physics, mathematics, computer science, engineering chemistry and education.
Computer Algebra in Scientific Computing
Author: François Boulier
Publisher: Springer Nature
ISBN: 3031417240
Category : Computers
Languages : en
Pages : 441
Book Description
This book constitutes the refereed proceedings of the 25th International Workshop on Computer Algebra in Scientific Computing, CASC 2023, which took place in Havana, Cuba, during August 28-September 1, 2023. The 22 full papers included in this book were carefully reviewed and selected from 29 submissions. They focus on the theory of symbolic computation and its implementation in computer algebra systems as well as all other areas of scientific computing with regard to their benefit from or use of computer algebra methods and software.
Publisher: Springer Nature
ISBN: 3031417240
Category : Computers
Languages : en
Pages : 441
Book Description
This book constitutes the refereed proceedings of the 25th International Workshop on Computer Algebra in Scientific Computing, CASC 2023, which took place in Havana, Cuba, during August 28-September 1, 2023. The 22 full papers included in this book were carefully reviewed and selected from 29 submissions. They focus on the theory of symbolic computation and its implementation in computer algebra systems as well as all other areas of scientific computing with regard to their benefit from or use of computer algebra methods and software.