Author: UNESCO
Publisher: UNESCO Publishing
ISBN: 9231002333
Category :
Languages : en
Pages : 82
Book Description
This report aims to 'crack the code' by deciphering the factors that hinder and facilitate girls' and women's participation, achievement and continuation in science, technology, engineering and mathematics (STEM) education and, in particular, what the education sector can do to promote girls' and women's interest in and engagement with STEM education and ultimately STEM careers.
Cracking the code
Author: UNESCO
Publisher: UNESCO Publishing
ISBN: 9231002333
Category :
Languages : en
Pages : 82
Book Description
This report aims to 'crack the code' by deciphering the factors that hinder and facilitate girls' and women's participation, achievement and continuation in science, technology, engineering and mathematics (STEM) education and, in particular, what the education sector can do to promote girls' and women's interest in and engagement with STEM education and ultimately STEM careers.
Publisher: UNESCO Publishing
ISBN: 9231002333
Category :
Languages : en
Pages : 82
Book Description
This report aims to 'crack the code' by deciphering the factors that hinder and facilitate girls' and women's participation, achievement and continuation in science, technology, engineering and mathematics (STEM) education and, in particular, what the education sector can do to promote girls' and women's interest in and engagement with STEM education and ultimately STEM careers.
Innovative Learning Environments in STEM Higher Education
Author: Jungwoo Ryoo
Publisher: Springer Nature
ISBN: 303058948X
Category : Social Science
Languages : en
Pages : 148
Book Description
As explored in this open access book, higher education in STEM fields is influenced by many factors, including education research, government and school policies, financial considerations, technology limitations, and acceptance of innovations by faculty and students. In 2018, Drs. Ryoo and Winkelmann explored the opportunities, challenges, and future research initiatives of innovative learning environments (ILEs) in higher education STEM disciplines in their pioneering project: eXploring the Future of Innovative Learning Environments (X-FILEs). Workshop participants evaluated four main ILE categories: personalized and adaptive learning, multimodal learning formats, cross/extended reality (XR), and artificial intelligence (AI) and machine learning (ML). This open access book gathers the perspectives expressed during the X-FILEs workshop and its follow-up activities. It is designed to help inform education policy makers, researchers, developers, and practitioners about the adoption and implementation of ILEs in higher education.
Publisher: Springer Nature
ISBN: 303058948X
Category : Social Science
Languages : en
Pages : 148
Book Description
As explored in this open access book, higher education in STEM fields is influenced by many factors, including education research, government and school policies, financial considerations, technology limitations, and acceptance of innovations by faculty and students. In 2018, Drs. Ryoo and Winkelmann explored the opportunities, challenges, and future research initiatives of innovative learning environments (ILEs) in higher education STEM disciplines in their pioneering project: eXploring the Future of Innovative Learning Environments (X-FILEs). Workshop participants evaluated four main ILE categories: personalized and adaptive learning, multimodal learning formats, cross/extended reality (XR), and artificial intelligence (AI) and machine learning (ML). This open access book gathers the perspectives expressed during the X-FILEs workshop and its follow-up activities. It is designed to help inform education policy makers, researchers, developers, and practitioners about the adoption and implementation of ILEs in higher education.
Effective Chemistry Communication in Informal Environments
Author: National Academies of Sciences, Engineering, and Medicine
Publisher: National Academies Press
ISBN: 0309377528
Category : Science
Languages : en
Pages : 169
Book Description
Chemistry plays a critical role in daily life, impacting areas such as medicine and health, consumer products, energy production, the ecosystem, and many other areas. Communicating about chemistry in informal environments has the potential to raise public interest and understanding of chemistry around the world. However, the chemistry community lacks a cohesive, evidence-based guide for designing effective communication activities. This report is organized into two sections. Part A: The Evidence Base for Enhanced Communication summarizes evidence from communications, informal learning, and chemistry education on effective practices to communicate with and engage publics outside of the classroom; presents a framework for the design of chemistry communication activities; and identifies key areas for future research. Part B: Communicating Chemistry: A Framework for Sharing Science is a practical guide intended for any chemists to use in the design, implementation, and evaluation of their public communication efforts.
Publisher: National Academies Press
ISBN: 0309377528
Category : Science
Languages : en
Pages : 169
Book Description
Chemistry plays a critical role in daily life, impacting areas such as medicine and health, consumer products, energy production, the ecosystem, and many other areas. Communicating about chemistry in informal environments has the potential to raise public interest and understanding of chemistry around the world. However, the chemistry community lacks a cohesive, evidence-based guide for designing effective communication activities. This report is organized into two sections. Part A: The Evidence Base for Enhanced Communication summarizes evidence from communications, informal learning, and chemistry education on effective practices to communicate with and engage publics outside of the classroom; presents a framework for the design of chemistry communication activities; and identifies key areas for future research. Part B: Communicating Chemistry: A Framework for Sharing Science is a practical guide intended for any chemists to use in the design, implementation, and evaluation of their public communication efforts.
The Science of Effective Mentorship in STEMM
Author: National Academies of Sciences, Engineering, and Medicine
Publisher: National Academies Press
ISBN: 0309497299
Category : Education
Languages : en
Pages : 307
Book Description
Mentorship is a catalyst capable of unleashing one's potential for discovery, curiosity, and participation in STEMM and subsequently improving the training environment in which that STEMM potential is fostered. Mentoring relationships provide developmental spaces in which students' STEMM skills are honed and pathways into STEMM fields can be discovered. Because mentorship can be so influential in shaping the future STEMM workforce, its occurrence should not be left to chance or idiosyncratic implementation. There is a gap between what we know about effective mentoring and how it is practiced in higher education. The Science of Effective Mentorship in STEMM studies mentoring programs and practices at the undergraduate and graduate levels. It explores the importance of mentorship, the science of mentoring relationships, mentorship of underrepresented students in STEMM, mentorship structures and behaviors, and institutional cultures that support mentorship. This report and its complementary interactive guide present insights on effective programs and practices that can be adopted and adapted by institutions, departments, and individual faculty members.
Publisher: National Academies Press
ISBN: 0309497299
Category : Education
Languages : en
Pages : 307
Book Description
Mentorship is a catalyst capable of unleashing one's potential for discovery, curiosity, and participation in STEMM and subsequently improving the training environment in which that STEMM potential is fostered. Mentoring relationships provide developmental spaces in which students' STEMM skills are honed and pathways into STEMM fields can be discovered. Because mentorship can be so influential in shaping the future STEMM workforce, its occurrence should not be left to chance or idiosyncratic implementation. There is a gap between what we know about effective mentoring and how it is practiced in higher education. The Science of Effective Mentorship in STEMM studies mentoring programs and practices at the undergraduate and graduate levels. It explores the importance of mentorship, the science of mentoring relationships, mentorship of underrepresented students in STEMM, mentorship structures and behaviors, and institutional cultures that support mentorship. This report and its complementary interactive guide present insights on effective programs and practices that can be adopted and adapted by institutions, departments, and individual faculty members.
English Learners in STEM Subjects
Author: National Academies of Sciences, Engineering, and Medicine
Publisher: National Academies Press
ISBN: 0309479088
Category : Education
Languages : en
Pages : 345
Book Description
The imperative that all students, including English learners (ELs), achieve high academic standards and have opportunities to participate in science, technology, engineering, and mathematics (STEM) learning has become even more urgent and complex given shifts in science and mathematics standards. As a group, these students are underrepresented in STEM fields in college and in the workforce at a time when the demand for workers and professionals in STEM fields is unmet and increasing. However, English learners bring a wealth of resources to STEM learning, including knowledge and interest in STEM-related content that is born out of their experiences in their homes and communities, home languages, variation in discourse practices, and, in some cases, experiences with schooling in other countries. English Learners in STEM Subjects: Transforming Classrooms, Schools, and Lives examines the research on ELs' learning, teaching, and assessment in STEM subjects and provides guidance on how to improve learning outcomes in STEM for these students. This report considers the complex social and academic use of language delineated in the new mathematics and science standards, the diversity of the population of ELs, and the integration of English as a second language instruction with core instructional programs in STEM.
Publisher: National Academies Press
ISBN: 0309479088
Category : Education
Languages : en
Pages : 345
Book Description
The imperative that all students, including English learners (ELs), achieve high academic standards and have opportunities to participate in science, technology, engineering, and mathematics (STEM) learning has become even more urgent and complex given shifts in science and mathematics standards. As a group, these students are underrepresented in STEM fields in college and in the workforce at a time when the demand for workers and professionals in STEM fields is unmet and increasing. However, English learners bring a wealth of resources to STEM learning, including knowledge and interest in STEM-related content that is born out of their experiences in their homes and communities, home languages, variation in discourse practices, and, in some cases, experiences with schooling in other countries. English Learners in STEM Subjects: Transforming Classrooms, Schools, and Lives examines the research on ELs' learning, teaching, and assessment in STEM subjects and provides guidance on how to improve learning outcomes in STEM for these students. This report considers the complex social and academic use of language delineated in the new mathematics and science standards, the diversity of the population of ELs, and the integration of English as a second language instruction with core instructional programs in STEM.
The Impact of School Infrastructure on Learning
Author: Peter Barrett
Publisher: World Bank Publications
ISBN: 1464813787
Category : Education
Languages : en
Pages : 71
Book Description
'The Impact of School Infrastructure on Learning: A Synthesis of the Evidence provides an excellent literature review of the resources that explore the areas of focus for improved student learning, particularly the aspiration for “accessible, well-built, child-centered, synergetic and fully realized learning environments.†? Written in a style which is both clear and accessible, it is a practical reference for senior government officials and professionals involved in the planning and design of educational facilities, as well as for educators and school leaders. --Yuri Belfali, Head of Division, Early Childhood and Schools, OECD Directorate for Education and Skills This is an important and welcome addition to the surprisingly small, evidence base on the impacts of school infrastructure given the capital investment involved. It will provide policy makers, practitioners, and those who are about to commission a new build with an important and comprehensive point of reference. The emphasis on safe and healthy spaces for teaching and learning is particularly welcome. --Harry Daniels, Professor of Education, Department of Education, Oxford University, UK This report offers a useful library of recent research to support the, connection between facility quality and student outcomes. At the same time, it also points to the unmet need for research to provide verifiable and reliable information on this connection. With such evidence, decisionmakers will be better positioned to accurately balance the allocation of limited resources among the multiple competing dimensions of school policy, including the construction and maintenance of the school facility. --David Lever, K-12 Facility Planner, Former Executive Director of the Interagency Committee on School Construction, Maryland Many planners and designers are seeking a succinct body of research defining both the issues surrounding the global planning of facilities as well as the educational outcomes based on the quality of the space provided. The authors have finally brought that body of evidence together in this well-structured report. The case for better educational facilities is clearly defined and resources are succinctly identified to stimulate the dialogue to come. We should all join this conversation to further the process of globally enhancing learning-environment quality! --David Schrader, AIA, Educational Facility Planner and Designer, Former Chairman of the Board of Directors, Association for Learning Environments (A4LE)
Publisher: World Bank Publications
ISBN: 1464813787
Category : Education
Languages : en
Pages : 71
Book Description
'The Impact of School Infrastructure on Learning: A Synthesis of the Evidence provides an excellent literature review of the resources that explore the areas of focus for improved student learning, particularly the aspiration for “accessible, well-built, child-centered, synergetic and fully realized learning environments.†? Written in a style which is both clear and accessible, it is a practical reference for senior government officials and professionals involved in the planning and design of educational facilities, as well as for educators and school leaders. --Yuri Belfali, Head of Division, Early Childhood and Schools, OECD Directorate for Education and Skills This is an important and welcome addition to the surprisingly small, evidence base on the impacts of school infrastructure given the capital investment involved. It will provide policy makers, practitioners, and those who are about to commission a new build with an important and comprehensive point of reference. The emphasis on safe and healthy spaces for teaching and learning is particularly welcome. --Harry Daniels, Professor of Education, Department of Education, Oxford University, UK This report offers a useful library of recent research to support the, connection between facility quality and student outcomes. At the same time, it also points to the unmet need for research to provide verifiable and reliable information on this connection. With such evidence, decisionmakers will be better positioned to accurately balance the allocation of limited resources among the multiple competing dimensions of school policy, including the construction and maintenance of the school facility. --David Lever, K-12 Facility Planner, Former Executive Director of the Interagency Committee on School Construction, Maryland Many planners and designers are seeking a succinct body of research defining both the issues surrounding the global planning of facilities as well as the educational outcomes based on the quality of the space provided. The authors have finally brought that body of evidence together in this well-structured report. The case for better educational facilities is clearly defined and resources are succinctly identified to stimulate the dialogue to come. We should all join this conversation to further the process of globally enhancing learning-environment quality! --David Schrader, AIA, Educational Facility Planner and Designer, Former Chairman of the Board of Directors, Association for Learning Environments (A4LE)
A Framework for K-12 Science Education
Author: National Research Council
Publisher: National Academies Press
ISBN: 0309214459
Category : Education
Languages : en
Pages : 400
Book Description
Science, engineering, and technology permeate nearly every facet of modern life and hold the key to solving many of humanity's most pressing current and future challenges. The United States' position in the global economy is declining, in part because U.S. workers lack fundamental knowledge in these fields. To address the critical issues of U.S. competitiveness and to better prepare the workforce, A Framework for K-12 Science Education proposes a new approach to K-12 science education that will capture students' interest and provide them with the necessary foundational knowledge in the field. A Framework for K-12 Science Education outlines a broad set of expectations for students in science and engineering in grades K-12. These expectations will inform the development of new standards for K-12 science education and, subsequently, revisions to curriculum, instruction, assessment, and professional development for educators. This book identifies three dimensions that convey the core ideas and practices around which science and engineering education in these grades should be built. These three dimensions are: crosscutting concepts that unify the study of science through their common application across science and engineering; scientific and engineering practices; and disciplinary core ideas in the physical sciences, life sciences, and earth and space sciences and for engineering, technology, and the applications of science. The overarching goal is for all high school graduates to have sufficient knowledge of science and engineering to engage in public discussions on science-related issues, be careful consumers of scientific and technical information, and enter the careers of their choice. A Framework for K-12 Science Education is the first step in a process that can inform state-level decisions and achieve a research-grounded basis for improving science instruction and learning across the country. The book will guide standards developers, teachers, curriculum designers, assessment developers, state and district science administrators, and educators who teach science in informal environments.
Publisher: National Academies Press
ISBN: 0309214459
Category : Education
Languages : en
Pages : 400
Book Description
Science, engineering, and technology permeate nearly every facet of modern life and hold the key to solving many of humanity's most pressing current and future challenges. The United States' position in the global economy is declining, in part because U.S. workers lack fundamental knowledge in these fields. To address the critical issues of U.S. competitiveness and to better prepare the workforce, A Framework for K-12 Science Education proposes a new approach to K-12 science education that will capture students' interest and provide them with the necessary foundational knowledge in the field. A Framework for K-12 Science Education outlines a broad set of expectations for students in science and engineering in grades K-12. These expectations will inform the development of new standards for K-12 science education and, subsequently, revisions to curriculum, instruction, assessment, and professional development for educators. This book identifies three dimensions that convey the core ideas and practices around which science and engineering education in these grades should be built. These three dimensions are: crosscutting concepts that unify the study of science through their common application across science and engineering; scientific and engineering practices; and disciplinary core ideas in the physical sciences, life sciences, and earth and space sciences and for engineering, technology, and the applications of science. The overarching goal is for all high school graduates to have sufficient knowledge of science and engineering to engage in public discussions on science-related issues, be careful consumers of scientific and technical information, and enter the careers of their choice. A Framework for K-12 Science Education is the first step in a process that can inform state-level decisions and achieve a research-grounded basis for improving science instruction and learning across the country. The book will guide standards developers, teachers, curriculum designers, assessment developers, state and district science administrators, and educators who teach science in informal environments.
Handbook of Research on Student Engagement
Author: Sandra L. Christenson
Publisher: Springer Science & Business Media
ISBN: 1461420172
Category : Psychology
Languages : en
Pages : 839
Book Description
For more than two decades, the concept of student engagement has grown from simple attention in class to a construct comprised of cognitive, emotional, and behavioral components that embody and further develop motivation for learning. Similarly, the goals of student engagement have evolved from dropout prevention to improved outcomes for lifelong learning. This robust expansion has led to numerous lines of research across disciplines and are brought together clearly and comprehensively in the Handbook of Research on Student Engagement. The Handbook guides readers through the field’s rich history, sorts out its component constructs, and identifies knowledge gaps to be filled by future research. Grounding data in real-world learning situations, contributors analyze indicators and facilitators of student engagement, link engagement to motivation, and gauge the impact of family, peers, and teachers on engagement in elementary and secondary grades. Findings on the effectiveness of classroom interventions are discussed in detail. And because assessing engagement is still a relatively new endeavor, chapters on measurement methods and issues round out this important resource. Topical areas addressed in the Handbook include: Engagement across developmental stages. Self-efficacy in the engaged learner. Parental and social influences on engagement and achievement motivation. The engaging nature of teaching for competency development. The relationship between engagement and high-risk behavior in adolescents. Comparing methods for measuring student engagement. An essential guide to the expanding knowledge base, the Handbook of Research on Student Engagement serves as a valuable resource for researchers, scientist-practitioners, and graduate students in such varied fields as clinical child and school psychology, educational psychology, public health, teaching and teacher education, social work, and educational policy.
Publisher: Springer Science & Business Media
ISBN: 1461420172
Category : Psychology
Languages : en
Pages : 839
Book Description
For more than two decades, the concept of student engagement has grown from simple attention in class to a construct comprised of cognitive, emotional, and behavioral components that embody and further develop motivation for learning. Similarly, the goals of student engagement have evolved from dropout prevention to improved outcomes for lifelong learning. This robust expansion has led to numerous lines of research across disciplines and are brought together clearly and comprehensively in the Handbook of Research on Student Engagement. The Handbook guides readers through the field’s rich history, sorts out its component constructs, and identifies knowledge gaps to be filled by future research. Grounding data in real-world learning situations, contributors analyze indicators and facilitators of student engagement, link engagement to motivation, and gauge the impact of family, peers, and teachers on engagement in elementary and secondary grades. Findings on the effectiveness of classroom interventions are discussed in detail. And because assessing engagement is still a relatively new endeavor, chapters on measurement methods and issues round out this important resource. Topical areas addressed in the Handbook include: Engagement across developmental stages. Self-efficacy in the engaged learner. Parental and social influences on engagement and achievement motivation. The engaging nature of teaching for competency development. The relationship between engagement and high-risk behavior in adolescents. Comparing methods for measuring student engagement. An essential guide to the expanding knowledge base, the Handbook of Research on Student Engagement serves as a valuable resource for researchers, scientist-practitioners, and graduate students in such varied fields as clinical child and school psychology, educational psychology, public health, teaching and teacher education, social work, and educational policy.
21st Century Skills
Author: Bernie Trilling
Publisher: John Wiley & Sons
ISBN: 1118157060
Category : Education
Languages : en
Pages : 263
Book Description
This important resource introduces a framework for 21st Century learning that maps out the skills needed to survive and thrive in a complex and connected world. 21st Century content includes the basic core subjects of reading, writing, and arithmetic-but also emphasizes global awareness, financial/economic literacy, and health issues. The skills fall into three categories: learning and innovations skills; digital literacy skills; and life and career skills. This book is filled with vignettes, international examples, and classroom samples that help illustrate the framework and provide an exciting view of twenty-first century teaching and learning. Explores the three main categories of 21st Century Skills: learning and innovations skills; digital literacy skills; and life and career skills Addresses timely issues such as the rapid advance of technology and increased economic competition Based on a framework developed by the Partnership for 21st Century Skills (P21) The book contains a video with clips of classroom teaching. For more information on the book visit www.21stcenturyskillsbook.com.
Publisher: John Wiley & Sons
ISBN: 1118157060
Category : Education
Languages : en
Pages : 263
Book Description
This important resource introduces a framework for 21st Century learning that maps out the skills needed to survive and thrive in a complex and connected world. 21st Century content includes the basic core subjects of reading, writing, and arithmetic-but also emphasizes global awareness, financial/economic literacy, and health issues. The skills fall into three categories: learning and innovations skills; digital literacy skills; and life and career skills. This book is filled with vignettes, international examples, and classroom samples that help illustrate the framework and provide an exciting view of twenty-first century teaching and learning. Explores the three main categories of 21st Century Skills: learning and innovations skills; digital literacy skills; and life and career skills Addresses timely issues such as the rapid advance of technology and increased economic competition Based on a framework developed by the Partnership for 21st Century Skills (P21) The book contains a video with clips of classroom teaching. For more information on the book visit www.21stcenturyskillsbook.com.
AI and education
Author: Miao, Fengchun
Publisher: UNESCO Publishing
ISBN: 9231004476
Category : Political Science
Languages : en
Pages : 50
Book Description
Artificial Intelligence (AI) has the potential to address some of the biggest challenges in education today, innovate teaching and learning practices, and ultimately accelerate the progress towards SDG 4. However, these rapid technological developments inevitably bring multiple risks and challenges, which have so far outpaced policy debates and regulatory frameworks. This publication offers guidance for policy-makers on how best to leverage the opportunities and address the risks, presented by the growing connection between AI and education. It starts with the essentials of AI: definitions, techniques and technologies. It continues with a detailed analysis of the emerging trends and implications of AI for teaching and learning, including how we can ensure the ethical, inclusive and equitable use of AI in education, how education can prepare humans to live and work with AI, and how AI can be applied to enhance education. It finally introduces the challenges of harnessing AI to achieve SDG 4 and offers concrete actionable recommendations for policy-makers to plan policies and programmes for local contexts. [Publisher summary, ed]
Publisher: UNESCO Publishing
ISBN: 9231004476
Category : Political Science
Languages : en
Pages : 50
Book Description
Artificial Intelligence (AI) has the potential to address some of the biggest challenges in education today, innovate teaching and learning practices, and ultimately accelerate the progress towards SDG 4. However, these rapid technological developments inevitably bring multiple risks and challenges, which have so far outpaced policy debates and regulatory frameworks. This publication offers guidance for policy-makers on how best to leverage the opportunities and address the risks, presented by the growing connection between AI and education. It starts with the essentials of AI: definitions, techniques and technologies. It continues with a detailed analysis of the emerging trends and implications of AI for teaching and learning, including how we can ensure the ethical, inclusive and equitable use of AI in education, how education can prepare humans to live and work with AI, and how AI can be applied to enhance education. It finally introduces the challenges of harnessing AI to achieve SDG 4 and offers concrete actionable recommendations for policy-makers to plan policies and programmes for local contexts. [Publisher summary, ed]