Elements Of Stochastic Dynamics

Elements Of Stochastic Dynamics PDF Author: Guo-qiang Cai
Publisher: World Scientific Publishing Company
ISBN: 9814723347
Category : Technology & Engineering
Languages : en
Pages : 552

Get Book Here

Book Description
Stochastic dynamics has been a subject of interest since the early 20th Century. Since then, much progress has been made in this field of study, and many modern applications for it have been found in fields such as physics, chemistry, biology, ecology, economy, finance, and many branches of engineering including Mechanical, Ocean, Civil, Bio, and Earthquake Engineering.Elements of Stochastic Dynamics aims to meet the growing need to understand and master the subject by introducing fundamentals to researchers who want to explore stochastic dynamics in their fields and serving as a textbook for graduate students in various areas involving stochastic uncertainties. All topics within are presented from an application approach, and may thus be more appealing to users without a background in pure Mathematics. The book describes the basic concepts and theories of random variables and stochastic processes in detail; provides various solution procedures for systems subjected to stochastic excitations; introduces stochastic stability and bifurcation; and explores failures of stochastic systems. The book also incorporates some latest research results in modeling stochastic processes; in reducing the system degrees of freedom; and in solving nonlinear problems. The book also provides numerical simulation procedures of widely-used random variables and stochastic processes.A large number of exercise problems are included in the book to aid the understanding of the concepts and theories, and may be used for as course homework.

Elements Of Stochastic Dynamics

Elements Of Stochastic Dynamics PDF Author: Guo-qiang Cai
Publisher: World Scientific Publishing Company
ISBN: 9814723347
Category : Technology & Engineering
Languages : en
Pages : 552

Get Book Here

Book Description
Stochastic dynamics has been a subject of interest since the early 20th Century. Since then, much progress has been made in this field of study, and many modern applications for it have been found in fields such as physics, chemistry, biology, ecology, economy, finance, and many branches of engineering including Mechanical, Ocean, Civil, Bio, and Earthquake Engineering.Elements of Stochastic Dynamics aims to meet the growing need to understand and master the subject by introducing fundamentals to researchers who want to explore stochastic dynamics in their fields and serving as a textbook for graduate students in various areas involving stochastic uncertainties. All topics within are presented from an application approach, and may thus be more appealing to users without a background in pure Mathematics. The book describes the basic concepts and theories of random variables and stochastic processes in detail; provides various solution procedures for systems subjected to stochastic excitations; introduces stochastic stability and bifurcation; and explores failures of stochastic systems. The book also incorporates some latest research results in modeling stochastic processes; in reducing the system degrees of freedom; and in solving nonlinear problems. The book also provides numerical simulation procedures of widely-used random variables and stochastic processes.A large number of exercise problems are included in the book to aid the understanding of the concepts and theories, and may be used for as course homework.

Dynamics of Stochastic Systems

Dynamics of Stochastic Systems PDF Author: Valery I. Klyatskin
Publisher: Elsevier
ISBN: 008050485X
Category : Science
Languages : en
Pages : 211

Get Book Here

Book Description
Fluctuating parameters appear in a variety of physical systems and phenomena. They typically come either as random forces/sources, or advecting velocities, or media (material) parameters, like refraction index, conductivity, diffusivity, etc. The well known example of Brownian particle suspended in fluid and subjected to random molecular bombardment laid the foundation for modern stochastic calculus and statistical physics. Other important examples include turbulent transport and diffusion of particle-tracers (pollutants), or continuous densities (''oil slicks''), wave propagation and scattering in randomly inhomogeneous media, for instance light or sound propagating in the turbulent atmosphere.Such models naturally render to statistical description, where the input parameters and solutions are expressed by random processes and fields.The fundamental problem of stochastic dynamics is to identify the essential characteristics of system (its state and evolution), and relate those to the input parameters of the system and initial data.This raises a host of challenging mathematical issues. One could rarely solve such systems exactly (or approximately) in a closed analytic form, and their solutions depend in a complicated implicit manner on the initial-boundary data, forcing and system's (media) parameters . In mathematical terms such solution becomes a complicated "nonlinear functional" of random fields and processes.Part I gives mathematical formulation for the basic physical models of transport, diffusion, propagation and develops some analytic tools.Part II sets up and applies the techniques of variational calculus and stochastic analysis, like Fokker-Plank equation to those models, to produce exact or approximate solutions, or in worst case numeric procedures. The exposition is motivated and demonstrated with numerous examples.Part III takes up issues for the coherent phenomena in stochastic dynamical systems, described by ordinary and partial differential equations, like wave propagation in randomly layered media (localization), turbulent advection of passive tracers (clustering).Each chapter is appended with problems the reader to solve by himself (herself), which will be a good training for independent investigations.·This book is translation from Russian and is completed with new principal results of recent research.·The book develops mathematical tools of stochastic analysis, and applies them to a wide range of physical models of particles, fluids, and waves.·Accessible to a broad audience with general background in mathematical physics, but no special expertise in stochastic analysis, wave propagation or turbulence

Essentials of Stochastic Processes

Essentials of Stochastic Processes PDF Author: Richard Durrett
Publisher: Springer
ISBN: 3319456148
Category : Mathematics
Languages : en
Pages : 282

Get Book Here

Book Description
Building upon the previous editions, this textbook is a first course in stochastic processes taken by undergraduate and graduate students (MS and PhD students from math, statistics, economics, computer science, engineering, and finance departments) who have had a course in probability theory. It covers Markov chains in discrete and continuous time, Poisson processes, renewal processes, martingales, and option pricing. One can only learn a subject by seeing it in action, so there are a large number of examples and more than 300 carefully chosen exercises to deepen the reader’s understanding. Drawing from teaching experience and student feedback, there are many new examples and problems with solutions that use TI-83 to eliminate the tedious details of solving linear equations by hand, and the collection of exercises is much improved, with many more biological examples. Originally included in previous editions, material too advanced for this first course in stochastic processes has been eliminated while treatment of other topics useful for applications has been expanded. In addition, the ordering of topics has been improved; for example, the difficult subject of martingales is delayed until its usefulness can be applied in the treatment of mathematical finance.

Stochastic Differential Equations

Stochastic Differential Equations PDF Author: Michael J. Panik
Publisher: John Wiley & Sons
ISBN: 1119377404
Category : Mathematics
Languages : en
Pages : 362

Get Book Here

Book Description
A beginner’s guide to stochastic growth modeling The chief advantage of stochastic growth models over deterministic models is that they combine both deterministic and stochastic elements of dynamic behaviors, such as weather, natural disasters, market fluctuations, and epidemics. This makes stochastic modeling a powerful tool in the hands of practitioners in fields for which population growth is a critical determinant of outcomes. However, the background requirements for studying SDEs can be daunting for those who lack the rigorous course of study received by math majors. Designed to be accessible to readers who have had only a few courses in calculus and statistics, this book offers a comprehensive review of the mathematical essentials needed to understand and apply stochastic growth models. In addition, the book describes deterministic and stochastic applications of population growth models including logistic, generalized logistic, Gompertz, negative exponential, and linear. Ideal for students and professionals in an array of fields including economics, population studies, environmental sciences, epidemiology, engineering, finance, and the biological sciences, Stochastic Differential Equations: An Introduction with Applications in Population Dynamics Modeling: • Provides precise definitions of many important terms and concepts and provides many solved example problems • Highlights the interpretation of results and does not rely on a theorem-proof approach • Features comprehensive chapters addressing any background deficiencies readers may have and offers a comprehensive review for those who need a mathematics refresher • Emphasizes solution techniques for SDEs and their practical application to the development of stochastic population models An indispensable resource for students and practitioners with limited exposure to mathematics and statistics, Stochastic Differential Equations: An Introduction with Applications in Population Dynamics Modeling is an excellent fit for advanced undergraduates and beginning graduate students, as well as practitioners who need a gentle introduction to SDEs. Michael J. Panik, PhD, is Professor in the Department of Economics, Barney School of Business and Public Administration at the University of Hartford in Connecticut. He received his PhD in Economics from Boston College and is a member of the American Mathematical Society, The American Statistical Association, and The Econometric Society.

Stochastic Modelling of Reaction–Diffusion Processes

Stochastic Modelling of Reaction–Diffusion Processes PDF Author: Radek Erban
Publisher: Cambridge University Press
ISBN: 1108572995
Category : Mathematics
Languages : en
Pages : 322

Get Book Here

Book Description
This practical introduction to stochastic reaction-diffusion modelling is based on courses taught at the University of Oxford. The authors discuss the essence of mathematical methods which appear (under different names) in a number of interdisciplinary scientific fields bridging mathematics and computations with biology and chemistry. The book can be used both for self-study and as a supporting text for advanced undergraduate or beginning graduate-level courses in applied mathematics. New mathematical approaches are explained using simple examples of biological models, which range in size from simulations of small biomolecules to groups of animals. The book starts with stochastic modelling of chemical reactions, introducing stochastic simulation algorithms and mathematical methods for analysis of stochastic models. Different stochastic spatio-temporal models are then studied, including models of diffusion and stochastic reaction-diffusion modelling. The methods covered include molecular dynamics, Brownian dynamics, velocity jump processes and compartment-based (lattice-based) models.

Brownian Motion

Brownian Motion PDF Author: Mark A. McKibben
Publisher: Nova Science Publishers
ISBN: 9781634836821
Category : Brownian motion processes
Languages : en
Pages : 0

Get Book Here

Book Description
The fields of study in which random fluctuations arise and cannot be ignored are as disparate and numerous as there are synonyms for the word "noise." In the nearly two centuries following the discovery of what has come to be known as Brownian motion, named in homage to botanist Robert Brown, scientists, engineers, financial analysts, mathematicians, and literary authors have posited theories, created models, and composed literary works which have accounted for environmental noise. This volume offers a glimpse into the ways in which Brownian motion has crept into a myriad of fields of study through fifteen distinct chapters written by mathematicians, physicists, and other scholars. The intent is to especially highlight the vastness of scholarly work that explains various facets of Nature made possible by one scientist's curiosity sparked by observing sporadic movement of specks of pollen under a microscope in a 19th century laboratory.

Stochastic Processes for Physicists

Stochastic Processes for Physicists PDF Author: Kurt Jacobs
Publisher: Cambridge University Press
ISBN: 1139486799
Category : Science
Languages : en
Pages : 203

Get Book Here

Book Description
Stochastic processes are an essential part of numerous branches of physics, as well as in biology, chemistry, and finance. This textbook provides a solid understanding of stochastic processes and stochastic calculus in physics, without the need for measure theory. In avoiding measure theory, this textbook gives readers the tools necessary to use stochastic methods in research with a minimum of mathematical background. Coverage of the more exotic Levy processes is included, as is a concise account of numerical methods for simulating stochastic systems driven by Gaussian noise. The book concludes with a non-technical introduction to the concepts and jargon of measure-theoretic probability theory. With over 70 exercises, this textbook is an easily accessible introduction to stochastic processes and their applications, as well as methods for numerical simulation, for graduate students and researchers in physics.

Chaotic Transitions in Deterministic and Stochastic Dynamical Systems

Chaotic Transitions in Deterministic and Stochastic Dynamical Systems PDF Author: Emil Simiu
Publisher: Princeton University Press
ISBN: 1400832500
Category : Mathematics
Languages : en
Pages : 244

Get Book Here

Book Description
The classical Melnikov method provides information on the behavior of deterministic planar systems that may exhibit transitions, i.e. escapes from and captures into preferred regions of phase space. This book develops a unified treatment of deterministic and stochastic systems that extends the applicability of the Melnikov method to physically realizable stochastic planar systems with additive, state-dependent, white, colored, or dichotomous noise. The extended Melnikov method yields the novel result that motions with transitions are chaotic regardless of whether the excitation is deterministic or stochastic. It explains the role in the occurrence of transitions of the characteristics of the system and its deterministic or stochastic excitation, and is a powerful modeling and identification tool. The book is designed primarily for readers interested in applications. The level of preparation required corresponds to the equivalent of a first-year graduate course in applied mathematics. No previous exposure to dynamical systems theory or the theory of stochastic processes is required. The theoretical prerequisites and developments are presented in the first part of the book. The second part of the book is devoted to applications, ranging from physics to mechanical engineering, naval architecture, oceanography, nonlinear control, stochastic resonance, and neurophysiology.

An Introduction to Stochastic Modeling

An Introduction to Stochastic Modeling PDF Author: Howard M. Taylor
Publisher: Academic Press
ISBN: 1483269272
Category : Mathematics
Languages : en
Pages : 410

Get Book Here

Book Description
An Introduction to Stochastic Modeling provides information pertinent to the standard concepts and methods of stochastic modeling. This book presents the rich diversity of applications of stochastic processes in the sciences. Organized into nine chapters, this book begins with an overview of diverse types of stochastic models, which predicts a set of possible outcomes weighed by their likelihoods or probabilities. This text then provides exercises in the applications of simple stochastic analysis to appropriate problems. Other chapters consider the study of general functions of independent, identically distributed, nonnegative random variables representing the successive intervals between renewals. This book discusses as well the numerous examples of Markov branching processes that arise naturally in various scientific disciplines. The final chapter deals with queueing models, which aid the design process by predicting system performance. This book is a valuable resource for students of engineering and management science. Engineers will also find this book useful.

Stochastic Processes and Applications

Stochastic Processes and Applications PDF Author: Grigorios A. Pavliotis
Publisher: Springer
ISBN: 1493913239
Category : Mathematics
Languages : en
Pages : 345

Get Book Here

Book Description
This book presents various results and techniques from the theory of stochastic processes that are useful in the study of stochastic problems in the natural sciences. The main focus is analytical methods, although numerical methods and statistical inference methodologies for studying diffusion processes are also presented. The goal is the development of techniques that are applicable to a wide variety of stochastic models that appear in physics, chemistry and other natural sciences. Applications such as stochastic resonance, Brownian motion in periodic potentials and Brownian motors are studied and the connection between diffusion processes and time-dependent statistical mechanics is elucidated. The book contains a large number of illustrations, examples, and exercises. It will be useful for graduate-level courses on stochastic processes for students in applied mathematics, physics and engineering. Many of the topics covered in this book (reversible diffusions, convergence to equilibrium for diffusion processes, inference methods for stochastic differential equations, derivation of the generalized Langevin equation, exit time problems) cannot be easily found in textbook form and will be useful to both researchers and students interested in the applications of stochastic processes.