Elements of Point Set Topology

Elements of Point Set Topology PDF Author: John D. Baum
Publisher: Courier Corporation
ISBN: 0486668266
Category : Mathematics
Languages : en
Pages : 164

Get Book Here

Book Description
Topology continues to be a topic of prime importance in contemporary mathematics, but until the publication of this book there were few if any introductions to topology for undergraduates. This book remedied that need by offering a carefully thought-out, graduated approach to point set topology at the undergraduate level. To make the book as accessible as possible, the author approaches topology from a geometric and axiomatic standpoint; geometric, because most students come to the subject with a good deal of geometry behind them, enabling them to use their geometric intuition; axiomatic, because it parallels the student's experience with modern algebra, and keeps the book in harmony with current trends in mathematics. After a discussion of such preliminary topics as the algebra of sets, Euler-Venn diagrams and infinite sets, the author takes up basic definitions and theorems regarding topological spaces (Chapter 1). The second chapter deals with continuous functions (mappings) and homeomorphisms, followed by two chapters on special types of topological spaces (varieties of compactness and varieties of connectedness). Chapter 5 covers metric spaces. Since basic point set topology serves as a foundation not only for functional analysis but also for more advanced work in point set topology and algebraic topology, the author has included topics aimed at students with interests other than analysis. Moreover, Dr. Baum has supplied quite detailed proofs in the beginning to help students approaching this type of axiomatic mathematics for the first time. Similarly, in the first part of the book problems are elementary, but they become progressively more difficult toward the end of the book. References have been supplied to suggest further reading to the interested student.

Elements of Point Set Topology

Elements of Point Set Topology PDF Author: John D. Baum
Publisher: Courier Corporation
ISBN: 0486668266
Category : Mathematics
Languages : en
Pages : 164

Get Book Here

Book Description
Topology continues to be a topic of prime importance in contemporary mathematics, but until the publication of this book there were few if any introductions to topology for undergraduates. This book remedied that need by offering a carefully thought-out, graduated approach to point set topology at the undergraduate level. To make the book as accessible as possible, the author approaches topology from a geometric and axiomatic standpoint; geometric, because most students come to the subject with a good deal of geometry behind them, enabling them to use their geometric intuition; axiomatic, because it parallels the student's experience with modern algebra, and keeps the book in harmony with current trends in mathematics. After a discussion of such preliminary topics as the algebra of sets, Euler-Venn diagrams and infinite sets, the author takes up basic definitions and theorems regarding topological spaces (Chapter 1). The second chapter deals with continuous functions (mappings) and homeomorphisms, followed by two chapters on special types of topological spaces (varieties of compactness and varieties of connectedness). Chapter 5 covers metric spaces. Since basic point set topology serves as a foundation not only for functional analysis but also for more advanced work in point set topology and algebraic topology, the author has included topics aimed at students with interests other than analysis. Moreover, Dr. Baum has supplied quite detailed proofs in the beginning to help students approaching this type of axiomatic mathematics for the first time. Similarly, in the first part of the book problems are elementary, but they become progressively more difficult toward the end of the book. References have been supplied to suggest further reading to the interested student.

Elements of Point Set Topology

Elements of Point Set Topology PDF Author: John D. Baum
Publisher:
ISBN:
Category : Set theory
Languages : en
Pages : 166

Get Book Here

Book Description


Elements of Topology

Elements of Topology PDF Author: Tej Bahadur Singh
Publisher: CRC Press
ISBN: 1482215667
Category : Mathematics
Languages : en
Pages : 551

Get Book Here

Book Description
Topology is a large subject with many branches broadly categorized as algebraic topology, point-set topology, and geometric topology. Point-set topology is the main language for a broad variety of mathematical disciplines. Algebraic topology serves as a powerful tool for studying the problems in geometry and numerous other areas of mathematics. Ele

A Course in Point Set Topology

A Course in Point Set Topology PDF Author: John B. Conway
Publisher: Springer Science & Business Media
ISBN: 3319023683
Category : Mathematics
Languages : en
Pages : 154

Get Book Here

Book Description
This textbook in point set topology is aimed at an upper-undergraduate audience. Its gentle pace will be useful to students who are still learning to write proofs. Prerequisites include calculus and at least one semester of analysis, where the student has been properly exposed to the ideas of basic set theory such as subsets, unions, intersections, and functions, as well as convergence and other topological notions in the real line. Appendices are included to bridge the gap between this new material and material found in an analysis course. Metric spaces are one of the more prevalent topological spaces used in other areas and are therefore introduced in the first chapter and emphasized throughout the text. This also conforms to the approach of the book to start with the particular and work toward the more general. Chapter 2 defines and develops abstract topological spaces, with metric spaces as the source of inspiration, and with a focus on Hausdorff spaces. The final chapter concentrates on continuous real-valued functions, culminating in a development of paracompact spaces.

Basic Topology

Basic Topology PDF Author: M.A. Armstrong
Publisher: Springer Science & Business Media
ISBN: 1475717938
Category : Mathematics
Languages : en
Pages : 260

Get Book Here

Book Description
In this broad introduction to topology, the author searches for topological invariants of spaces, together with techniques for their calculating. Students with knowledge of real analysis, elementary group theory, and linear algebra will quickly become familiar with a wide variety of techniques and applications involving point-set, geometric, and algebraic topology. Over 139 illustrations and more than 350 problems of various difficulties help students gain a thorough understanding of the subject.

Elementary Topology

Elementary Topology PDF Author: O. Ya. Viro, O. A. Ivanov, N. Yu. Netsvetaev, V. M. Kharlamov
Publisher: American Mathematical Soc.
ISBN: 9780821886250
Category : Mathematics
Languages : en
Pages : 432

Get Book Here

Book Description
This text contains a detailed introduction to general topology and an introduction to algebraic topology via its most classical and elementary segment. Proofs of theorems are separated from their formulations and are gathered at the end of each chapter, making this book appear like a problem book and also giving it appeal to the expert as a handbook. The book includes about 1,000 exercises.

Experiments in Topology

Experiments in Topology PDF Author: Stephen Barr
Publisher: Courier Corporation
ISBN: 048615274X
Category : Mathematics
Languages : en
Pages : 244

Get Book Here

Book Description
Classic, lively explanation of one of the byways of mathematics. Klein bottles, Moebius strips, projective planes, map coloring, problem of the Koenigsberg bridges, much more, described with clarity and wit.

Topology

Topology PDF Author: John G. Hocking
Publisher: Courier Corporation
ISBN: 0486141098
Category : Mathematics
Languages : en
Pages : 404

Get Book Here

Book Description
Superb one-year course in classical topology. Topological spaces and functions, point-set topology, much more. Examples and problems. Bibliography. Index.

Non-Hausdorff Topology and Domain Theory

Non-Hausdorff Topology and Domain Theory PDF Author: Jean Goubault-Larrecq
Publisher: Cambridge University Press
ISBN: 1107328772
Category : Mathematics
Languages : en
Pages : 499

Get Book Here

Book Description
This unique book on modern topology looks well beyond traditional treatises and explores spaces that may, but need not, be Hausdorff. This is essential for domain theory, the cornerstone of semantics of computer languages, where the Scott topology is almost never Hausdorff. For the first time in a single volume, this book covers basic material on metric and topological spaces, advanced material on complete partial orders, Stone duality, stable compactness, quasi-metric spaces and much more. An early chapter on metric spaces serves as an invitation to the topic (continuity, limits, compactness, completeness) and forms a complete introductory course by itself. Graduate students and researchers alike will enjoy exploring this treasure trove of results. Full proofs are given, as well as motivating ideas, clear explanations, illuminating examples, application exercises and some more challenging problems for more advanced readers.

Topology from the Differentiable Viewpoint

Topology from the Differentiable Viewpoint PDF Author: John Willard Milnor
Publisher: Princeton University Press
ISBN: 9780691048338
Category : Mathematics
Languages : en
Pages : 80

Get Book Here

Book Description
This elegant book by distinguished mathematician John Milnor, provides a clear and succinct introduction to one of the most important subjects in modern mathematics. Beginning with basic concepts such as diffeomorphisms and smooth manifolds, he goes on to examine tangent spaces, oriented manifolds, and vector fields. Key concepts such as homotopy, the index number of a map, and the Pontryagin construction are discussed. The author presents proofs of Sard's theorem and the Hopf theorem.