Author: John M Erdman
Publisher: World Scientific
ISBN: 9811222746
Category : Mathematics
Languages : en
Pages : 234
Book Description
This set of notes is an activity-oriented introduction to linear and multilinear algebra. The great majority of the most elementary results in these subjects are straightforward and can be verified by the thoughtful student. Indeed, that is the main point of these notes — to convince the beginner that the subject is accessible. In the material that follows there are numerous indicators that suggest activity on the part of the reader: words such as 'proposition', 'example', 'theorem', 'exercise', and 'corollary', if not followed by a proof (and proofs here are very rare) or a reference to a proof, are invitations to verify the assertions made.These notes are intended to accompany an (academic) year-long course at the advanced undergraduate or beginning graduate level. (With judicious pruning most of the material can be covered in a two-term sequence.) The text is also suitable for a lecture-style class, the instructor proving some of the results while leaving others as exercises for the students.This book has tried to keep the facts about vector spaces and those about inner product spaces separate. Many beginning linear algebra texts conflate the material on these two vastly different subjects.
Elements Of Linear And Multilinear Algebra
Author: John M Erdman
Publisher: World Scientific
ISBN: 9811222746
Category : Mathematics
Languages : en
Pages : 234
Book Description
This set of notes is an activity-oriented introduction to linear and multilinear algebra. The great majority of the most elementary results in these subjects are straightforward and can be verified by the thoughtful student. Indeed, that is the main point of these notes — to convince the beginner that the subject is accessible. In the material that follows there are numerous indicators that suggest activity on the part of the reader: words such as 'proposition', 'example', 'theorem', 'exercise', and 'corollary', if not followed by a proof (and proofs here are very rare) or a reference to a proof, are invitations to verify the assertions made.These notes are intended to accompany an (academic) year-long course at the advanced undergraduate or beginning graduate level. (With judicious pruning most of the material can be covered in a two-term sequence.) The text is also suitable for a lecture-style class, the instructor proving some of the results while leaving others as exercises for the students.This book has tried to keep the facts about vector spaces and those about inner product spaces separate. Many beginning linear algebra texts conflate the material on these two vastly different subjects.
Publisher: World Scientific
ISBN: 9811222746
Category : Mathematics
Languages : en
Pages : 234
Book Description
This set of notes is an activity-oriented introduction to linear and multilinear algebra. The great majority of the most elementary results in these subjects are straightforward and can be verified by the thoughtful student. Indeed, that is the main point of these notes — to convince the beginner that the subject is accessible. In the material that follows there are numerous indicators that suggest activity on the part of the reader: words such as 'proposition', 'example', 'theorem', 'exercise', and 'corollary', if not followed by a proof (and proofs here are very rare) or a reference to a proof, are invitations to verify the assertions made.These notes are intended to accompany an (academic) year-long course at the advanced undergraduate or beginning graduate level. (With judicious pruning most of the material can be covered in a two-term sequence.) The text is also suitable for a lecture-style class, the instructor proving some of the results while leaving others as exercises for the students.This book has tried to keep the facts about vector spaces and those about inner product spaces separate. Many beginning linear algebra texts conflate the material on these two vastly different subjects.
Introduction to Applied Linear Algebra
Author: Stephen Boyd
Publisher: Cambridge University Press
ISBN: 1316518965
Category : Business & Economics
Languages : en
Pages : 477
Book Description
A groundbreaking introduction to vectors, matrices, and least squares for engineering applications, offering a wealth of practical examples.
Publisher: Cambridge University Press
ISBN: 1316518965
Category : Business & Economics
Languages : en
Pages : 477
Book Description
A groundbreaking introduction to vectors, matrices, and least squares for engineering applications, offering a wealth of practical examples.
Manifolds, Tensors and Forms
Author: Paul Renteln
Publisher: Cambridge University Press
ISBN: 1107042194
Category : Mathematics
Languages : en
Pages : 343
Book Description
Comprehensive treatment of the essentials of modern differential geometry and topology for graduate students in mathematics and the physical sciences.
Publisher: Cambridge University Press
ISBN: 1107042194
Category : Mathematics
Languages : en
Pages : 343
Book Description
Comprehensive treatment of the essentials of modern differential geometry and topology for graduate students in mathematics and the physical sciences.
Algebra I
Author: N. Bourbaki
Publisher: Springer Science & Business Media
ISBN: 9783540642435
Category : Mathematics
Languages : en
Pages : 750
Book Description
An exposition of the fundamentals of general, linear and multilinear algebra. The first chapter introduces the basic objects: groups, actions, rings, fields. The second chapter studies the properties of modules and linear maps, and the third investigatesalgebras, particularly tensor algebras.
Publisher: Springer Science & Business Media
ISBN: 9783540642435
Category : Mathematics
Languages : en
Pages : 750
Book Description
An exposition of the fundamentals of general, linear and multilinear algebra. The first chapter introduces the basic objects: groups, actions, rings, fields. The second chapter studies the properties of modules and linear maps, and the third investigatesalgebras, particularly tensor algebras.
Advanced Calculus (Revised Edition)
Author: Lynn Harold Loomis
Publisher: World Scientific Publishing Company
ISBN: 9814583952
Category : Mathematics
Languages : en
Pages : 595
Book Description
An authorised reissue of the long out of print classic textbook, Advanced Calculus by the late Dr Lynn Loomis and Dr Shlomo Sternberg both of Harvard University has been a revered but hard to find textbook for the advanced calculus course for decades.This book is based on an honors course in advanced calculus that the authors gave in the 1960's. The foundational material, presented in the unstarred sections of Chapters 1 through 11, was normally covered, but different applications of this basic material were stressed from year to year, and the book therefore contains more material than was covered in any one year. It can accordingly be used (with omissions) as a text for a year's course in advanced calculus, or as a text for a three-semester introduction to analysis.The prerequisites are a good grounding in the calculus of one variable from a mathematically rigorous point of view, together with some acquaintance with linear algebra. The reader should be familiar with limit and continuity type arguments and have a certain amount of mathematical sophistication. As possible introductory texts, we mention Differential and Integral Calculus by R Courant, Calculus by T Apostol, Calculus by M Spivak, and Pure Mathematics by G Hardy. The reader should also have some experience with partial derivatives.In overall plan the book divides roughly into a first half which develops the calculus (principally the differential calculus) in the setting of normed vector spaces, and a second half which deals with the calculus of differentiable manifolds.
Publisher: World Scientific Publishing Company
ISBN: 9814583952
Category : Mathematics
Languages : en
Pages : 595
Book Description
An authorised reissue of the long out of print classic textbook, Advanced Calculus by the late Dr Lynn Loomis and Dr Shlomo Sternberg both of Harvard University has been a revered but hard to find textbook for the advanced calculus course for decades.This book is based on an honors course in advanced calculus that the authors gave in the 1960's. The foundational material, presented in the unstarred sections of Chapters 1 through 11, was normally covered, but different applications of this basic material were stressed from year to year, and the book therefore contains more material than was covered in any one year. It can accordingly be used (with omissions) as a text for a year's course in advanced calculus, or as a text for a three-semester introduction to analysis.The prerequisites are a good grounding in the calculus of one variable from a mathematically rigorous point of view, together with some acquaintance with linear algebra. The reader should be familiar with limit and continuity type arguments and have a certain amount of mathematical sophistication. As possible introductory texts, we mention Differential and Integral Calculus by R Courant, Calculus by T Apostol, Calculus by M Spivak, and Pure Mathematics by G Hardy. The reader should also have some experience with partial derivatives.In overall plan the book divides roughly into a first half which develops the calculus (principally the differential calculus) in the setting of normed vector spaces, and a second half which deals with the calculus of differentiable manifolds.
Thirty-three Miniatures
Author: Jiří Matoušek
Publisher: American Mathematical Soc.
ISBN: 0821849778
Category : Mathematics
Languages : en
Pages : 196
Book Description
This volume contains a collection of clever mathematical applications of linear algebra, mainly in combinatorics, geometry, and algorithms. Each chapter covers a single main result with motivation and full proof in at most ten pages and can be read independently of all other chapters (with minor exceptions), assuming only a modest background in linear algebra. The topics include a number of well-known mathematical gems, such as Hamming codes, the matrix-tree theorem, the Lovasz bound on the Shannon capacity, and a counterexample to Borsuk's conjecture, as well as other, perhaps less popular but similarly beautiful results, e.g., fast associativity testing, a lemma of Steinitz on ordering vectors, a monotonicity result for integer partitions, or a bound for set pairs via exterior products. The simpler results in the first part of the book provide ample material to liven up an undergraduate course of linear algebra. The more advanced parts can be used for a graduate course of linear-algebraic methods or for seminar presentations. Table of Contents: Fibonacci numbers, quickly; Fibonacci numbers, the formula; The clubs of Oddtown; Same-size intersections; Error-correcting codes; Odd distances; Are these distances Euclidean?; Packing complete bipartite graphs; Equiangular lines; Where is the triangle?; Checking matrix multiplication; Tiling a rectangle by squares; Three Petersens are not enough; Petersen, Hoffman-Singleton, and maybe 57; Only two distances; Covering a cube minus one vertex; Medium-size intersection is hard to avoid; On the difficulty of reducing the diameter; The end of the small coins; Walking in the yard; Counting spanning trees; In how many ways can a man tile a board?; More bricks--more walls?; Perfect matchings and determinants; Turning a ladder over a finite field; Counting compositions; Is it associative?; The secret agent and umbrella; Shannon capacity of the union: a tale of two fields; Equilateral sets; Cutting cheaply using eigenvectors; Rotating the cube; Set pairs and exterior products; Index. (STML/53)
Publisher: American Mathematical Soc.
ISBN: 0821849778
Category : Mathematics
Languages : en
Pages : 196
Book Description
This volume contains a collection of clever mathematical applications of linear algebra, mainly in combinatorics, geometry, and algorithms. Each chapter covers a single main result with motivation and full proof in at most ten pages and can be read independently of all other chapters (with minor exceptions), assuming only a modest background in linear algebra. The topics include a number of well-known mathematical gems, such as Hamming codes, the matrix-tree theorem, the Lovasz bound on the Shannon capacity, and a counterexample to Borsuk's conjecture, as well as other, perhaps less popular but similarly beautiful results, e.g., fast associativity testing, a lemma of Steinitz on ordering vectors, a monotonicity result for integer partitions, or a bound for set pairs via exterior products. The simpler results in the first part of the book provide ample material to liven up an undergraduate course of linear algebra. The more advanced parts can be used for a graduate course of linear-algebraic methods or for seminar presentations. Table of Contents: Fibonacci numbers, quickly; Fibonacci numbers, the formula; The clubs of Oddtown; Same-size intersections; Error-correcting codes; Odd distances; Are these distances Euclidean?; Packing complete bipartite graphs; Equiangular lines; Where is the triangle?; Checking matrix multiplication; Tiling a rectangle by squares; Three Petersens are not enough; Petersen, Hoffman-Singleton, and maybe 57; Only two distances; Covering a cube minus one vertex; Medium-size intersection is hard to avoid; On the difficulty of reducing the diameter; The end of the small coins; Walking in the yard; Counting spanning trees; In how many ways can a man tile a board?; More bricks--more walls?; Perfect matchings and determinants; Turning a ladder over a finite field; Counting compositions; Is it associative?; The secret agent and umbrella; Shannon capacity of the union: a tale of two fields; Equilateral sets; Cutting cheaply using eigenvectors; Rotating the cube; Set pairs and exterior products; Index. (STML/53)
Tensors: Geometry and Applications
Author: J. M. Landsberg
Publisher: American Mathematical Soc.
ISBN: 0821869078
Category : Mathematics
Languages : en
Pages : 464
Book Description
Tensors are ubiquitous in the sciences. The geometry of tensors is both a powerful tool for extracting information from data sets, and a beautiful subject in its own right. This book has three intended uses: a classroom textbook, a reference work for researchers in the sciences, and an account of classical and modern results in (aspects of) the theory that will be of interest to researchers in geometry. For classroom use, there is a modern introduction to multilinear algebra and to the geometry and representation theory needed to study tensors, including a large number of exercises. For researchers in the sciences, there is information on tensors in table format for easy reference and a summary of the state of the art in elementary language. This is the first book containing many classical results regarding tensors. Particular applications treated in the book include the complexity of matrix multiplication, P versus NP, signal processing, phylogenetics, and algebraic statistics. For geometers, there is material on secant varieties, G-varieties, spaces with finitely many orbits and how these objects arise in applications, discussions of numerous open questions in geometry arising in applications, and expositions of advanced topics such as the proof of the Alexander-Hirschowitz theorem and of the Weyman-Kempf method for computing syzygies.
Publisher: American Mathematical Soc.
ISBN: 0821869078
Category : Mathematics
Languages : en
Pages : 464
Book Description
Tensors are ubiquitous in the sciences. The geometry of tensors is both a powerful tool for extracting information from data sets, and a beautiful subject in its own right. This book has three intended uses: a classroom textbook, a reference work for researchers in the sciences, and an account of classical and modern results in (aspects of) the theory that will be of interest to researchers in geometry. For classroom use, there is a modern introduction to multilinear algebra and to the geometry and representation theory needed to study tensors, including a large number of exercises. For researchers in the sciences, there is information on tensors in table format for easy reference and a summary of the state of the art in elementary language. This is the first book containing many classical results regarding tensors. Particular applications treated in the book include the complexity of matrix multiplication, P versus NP, signal processing, phylogenetics, and algebraic statistics. For geometers, there is material on secant varieties, G-varieties, spaces with finitely many orbits and how these objects arise in applications, discussions of numerous open questions in geometry arising in applications, and expositions of advanced topics such as the proof of the Alexander-Hirschowitz theorem and of the Weyman-Kempf method for computing syzygies.
Introduction to Vectors and Tensors
Author: Ray M. Bowen
Publisher: Springer
ISBN:
Category : Mathematics
Languages : en
Pages : 224
Book Description
To Volume 1 This work represents our effort to present the basic concepts of vector and tensor analysis. Volume 1 begins with a brief discussion of algebraic structures followed by a rather detailed discussion of the algebra of vectors and tensors. Volume 2 begins with a discussion of Euclidean manifolds, which leads to a development of the analytical and geometrical aspects of vector and tensor fields. We have not included a discussion of general differentiable manifolds. However, we have included a chapter on vector and tensor fields defined on hypersurfaces in a Euclidean manifold. In preparing this two-volume work, our intention was to present to engineering and science students a modern introduction to vectors and tensors. Traditional courses on applied mathematics have emphasized problem-solving techniques rather than the systematic development of concepts. As a result, it is possible for such courses to become terminal mathematics courses rather than courses which equip the student to develop his or her understanding further.
Publisher: Springer
ISBN:
Category : Mathematics
Languages : en
Pages : 224
Book Description
To Volume 1 This work represents our effort to present the basic concepts of vector and tensor analysis. Volume 1 begins with a brief discussion of algebraic structures followed by a rather detailed discussion of the algebra of vectors and tensors. Volume 2 begins with a discussion of Euclidean manifolds, which leads to a development of the analytical and geometrical aspects of vector and tensor fields. We have not included a discussion of general differentiable manifolds. However, we have included a chapter on vector and tensor fields defined on hypersurfaces in a Euclidean manifold. In preparing this two-volume work, our intention was to present to engineering and science students a modern introduction to vectors and tensors. Traditional courses on applied mathematics have emphasized problem-solving techniques rather than the systematic development of concepts. As a result, it is possible for such courses to become terminal mathematics courses rather than courses which equip the student to develop his or her understanding further.
Advanced Linear Algebra
Author: Nicholas Loehr
Publisher: CRC Press
ISBN: 1466559012
Category : Mathematics
Languages : en
Pages : 634
Book Description
Designed for advanced undergraduate and beginning graduate students in linear or abstract algebra, Advanced Linear Algebra covers theoretical aspects of the subject, along with examples, computations, and proofs. It explores a variety of advanced topics in linear algebra that highlight the rich interconnections of the subject to geometry, algebra, analysis, combinatorics, numerical computation, and many other areas of mathematics. The book’s 20 chapters are grouped into six main areas: algebraic structures, matrices, structured matrices, geometric aspects of linear algebra, modules, and multilinear algebra. The level of abstraction gradually increases as students proceed through the text, moving from matrices to vector spaces to modules. Each chapter consists of a mathematical vignette devoted to the development of one specific topic. Some chapters look at introductory material from a sophisticated or abstract viewpoint while others provide elementary expositions of more theoretical concepts. Several chapters offer unusual perspectives or novel treatments of standard results. Unlike similar advanced mathematical texts, this one minimizes the dependence of each chapter on material found in previous chapters so that students may immediately turn to the relevant chapter without first wading through pages of earlier material to access the necessary algebraic background and theorems. Chapter summaries contain a structured list of the principal definitions and results. End-of-chapter exercises aid students in digesting the material. Students are encouraged to use a computer algebra system to help solve computationally intensive exercises.
Publisher: CRC Press
ISBN: 1466559012
Category : Mathematics
Languages : en
Pages : 634
Book Description
Designed for advanced undergraduate and beginning graduate students in linear or abstract algebra, Advanced Linear Algebra covers theoretical aspects of the subject, along with examples, computations, and proofs. It explores a variety of advanced topics in linear algebra that highlight the rich interconnections of the subject to geometry, algebra, analysis, combinatorics, numerical computation, and many other areas of mathematics. The book’s 20 chapters are grouped into six main areas: algebraic structures, matrices, structured matrices, geometric aspects of linear algebra, modules, and multilinear algebra. The level of abstraction gradually increases as students proceed through the text, moving from matrices to vector spaces to modules. Each chapter consists of a mathematical vignette devoted to the development of one specific topic. Some chapters look at introductory material from a sophisticated or abstract viewpoint while others provide elementary expositions of more theoretical concepts. Several chapters offer unusual perspectives or novel treatments of standard results. Unlike similar advanced mathematical texts, this one minimizes the dependence of each chapter on material found in previous chapters so that students may immediately turn to the relevant chapter without first wading through pages of earlier material to access the necessary algebraic background and theorems. Chapter summaries contain a structured list of the principal definitions and results. End-of-chapter exercises aid students in digesting the material. Students are encouraged to use a computer algebra system to help solve computationally intensive exercises.
Linear Algebra and Geometry
Author: Igor R. Shafarevich
Publisher: Springer Science & Business Media
ISBN: 3642309941
Category : Mathematics
Languages : en
Pages : 536
Book Description
This book on linear algebra and geometry is based on a course given by renowned academician I.R. Shafarevich at Moscow State University. The book begins with the theory of linear algebraic equations and the basic elements of matrix theory and continues with vector spaces, linear transformations, inner product spaces, and the theory of affine and projective spaces. The book also includes some subjects that are naturally related to linear algebra but are usually not covered in such courses: exterior algebras, non-Euclidean geometry, topological properties of projective spaces, theory of quadrics (in affine and projective spaces), decomposition of finite abelian groups, and finitely generated periodic modules (similar to Jordan normal forms of linear operators). Mathematical reasoning, theorems, and concepts are illustrated with numerous examples from various fields of mathematics, including differential equations and differential geometry, as well as from mechanics and physics.
Publisher: Springer Science & Business Media
ISBN: 3642309941
Category : Mathematics
Languages : en
Pages : 536
Book Description
This book on linear algebra and geometry is based on a course given by renowned academician I.R. Shafarevich at Moscow State University. The book begins with the theory of linear algebraic equations and the basic elements of matrix theory and continues with vector spaces, linear transformations, inner product spaces, and the theory of affine and projective spaces. The book also includes some subjects that are naturally related to linear algebra but are usually not covered in such courses: exterior algebras, non-Euclidean geometry, topological properties of projective spaces, theory of quadrics (in affine and projective spaces), decomposition of finite abelian groups, and finitely generated periodic modules (similar to Jordan normal forms of linear operators). Mathematical reasoning, theorems, and concepts are illustrated with numerous examples from various fields of mathematics, including differential equations and differential geometry, as well as from mechanics and physics.