Author: Richard Haberman
Publisher: Prentice Hall
ISBN:
Category : Mathematics
Languages : en
Pages : 568
Book Description
This text is designed for engineers, scientists, and mathematicians with a background in elementary ordinary differential equations and calculus.
Elementary Applied Partial Differential Equations
Author: Richard Haberman
Publisher: Prentice Hall
ISBN:
Category : Mathematics
Languages : en
Pages : 568
Book Description
This text is designed for engineers, scientists, and mathematicians with a background in elementary ordinary differential equations and calculus.
Publisher: Prentice Hall
ISBN:
Category : Mathematics
Languages : en
Pages : 568
Book Description
This text is designed for engineers, scientists, and mathematicians with a background in elementary ordinary differential equations and calculus.
Applied Partial Differential Equations
Author: J. David Logan
Publisher: Springer Science & Business Media
ISBN: 1468405330
Category : Mathematics
Languages : en
Pages : 193
Book Description
This textbook is for the standard, one-semester, junior-senior course that often goes by the title "Elementary Partial Differential Equations" or "Boundary Value Problems;' The audience usually consists of stu dents in mathematics, engineering, and the physical sciences. The topics include derivations of some of the standard equations of mathemati cal physics (including the heat equation, the· wave equation, and the Laplace's equation) and methods for solving those equations on bounded and unbounded domains. Methods include eigenfunction expansions or separation of variables, and methods based on Fourier and Laplace transforms. Prerequisites include calculus and a post-calculus differential equations course. There are several excellent texts for this course, so one can legitimately ask why one would wish to write another. A survey of the content of the existing titles shows that their scope is broad and the analysis detailed; and they often exceed five hundred pages in length. These books gen erally have enough material for two, three, or even four semesters. Yet, many undergraduate courses are one-semester courses. The author has often felt that students become a little uncomfortable when an instructor jumps around in a long volume searching for the right topics, or only par tially covers some topics; but they are secure in completely mastering a short, well-defined introduction. This text was written to proVide a brief, one-semester introduction to partial differential equations.
Publisher: Springer Science & Business Media
ISBN: 1468405330
Category : Mathematics
Languages : en
Pages : 193
Book Description
This textbook is for the standard, one-semester, junior-senior course that often goes by the title "Elementary Partial Differential Equations" or "Boundary Value Problems;' The audience usually consists of stu dents in mathematics, engineering, and the physical sciences. The topics include derivations of some of the standard equations of mathemati cal physics (including the heat equation, the· wave equation, and the Laplace's equation) and methods for solving those equations on bounded and unbounded domains. Methods include eigenfunction expansions or separation of variables, and methods based on Fourier and Laplace transforms. Prerequisites include calculus and a post-calculus differential equations course. There are several excellent texts for this course, so one can legitimately ask why one would wish to write another. A survey of the content of the existing titles shows that their scope is broad and the analysis detailed; and they often exceed five hundred pages in length. These books gen erally have enough material for two, three, or even four semesters. Yet, many undergraduate courses are one-semester courses. The author has often felt that students become a little uncomfortable when an instructor jumps around in a long volume searching for the right topics, or only par tially covers some topics; but they are secure in completely mastering a short, well-defined introduction. This text was written to proVide a brief, one-semester introduction to partial differential equations.
Applied Partial Differential Equations with Fourier Series and Boundary Value Problems (Classic Version)
Author: Richard Haberman
Publisher: Pearson
ISBN: 9780134995434
Category : Boundary value problems
Languages : en
Pages : 784
Book Description
This title is part of the Pearson Modern Classics series. Pearson Modern Classics are acclaimed titles at a value price. Please visit www.pearsonhighered.com/math-classics-series for a complete list of titles. Applied Partial Differential Equations with Fourier Series and Boundary Value Problems emphasizes the physical interpretation of mathematical solutions and introduces applied mathematics while presenting differential equations. Coverage includes Fourier series, orthogonal functions, boundary value problems, Green's functions, and transform methods. This text is ideal for readers interested in science, engineering, and applied mathematics.
Publisher: Pearson
ISBN: 9780134995434
Category : Boundary value problems
Languages : en
Pages : 784
Book Description
This title is part of the Pearson Modern Classics series. Pearson Modern Classics are acclaimed titles at a value price. Please visit www.pearsonhighered.com/math-classics-series for a complete list of titles. Applied Partial Differential Equations with Fourier Series and Boundary Value Problems emphasizes the physical interpretation of mathematical solutions and introduces applied mathematics while presenting differential equations. Coverage includes Fourier series, orthogonal functions, boundary value problems, Green's functions, and transform methods. This text is ideal for readers interested in science, engineering, and applied mathematics.
Applied Partial Differential Equations: An Introduction
Author: Alan Jeffrey
Publisher: Academic Press
ISBN: 9780123822529
Category : Mathematics
Languages : en
Pages : 412
Book Description
This book is written to meet the needs of undergraduates in applied mathematics, physics and engineering studying partial differential equations. It is a more modern, comprehensive treatment intended for students who need more than the purely numerical solutions provided by programs like the MATLAB PDE Toolbox, and those obtained by the method of separation of variables, which is usually the only theoretical approach found in the majority of elementary textbooks. This will fill a need in the market for a more modern text for future working engineers, and one that students can read and understand much more easily than those currently on the market. * Includes new and important materials necessary to meet current demands made by diverse applications * Very detailed solutions to odd numbered problems to help students * Instructor's Manual Available
Publisher: Academic Press
ISBN: 9780123822529
Category : Mathematics
Languages : en
Pages : 412
Book Description
This book is written to meet the needs of undergraduates in applied mathematics, physics and engineering studying partial differential equations. It is a more modern, comprehensive treatment intended for students who need more than the purely numerical solutions provided by programs like the MATLAB PDE Toolbox, and those obtained by the method of separation of variables, which is usually the only theoretical approach found in the majority of elementary textbooks. This will fill a need in the market for a more modern text for future working engineers, and one that students can read and understand much more easily than those currently on the market. * Includes new and important materials necessary to meet current demands made by diverse applications * Very detailed solutions to odd numbered problems to help students * Instructor's Manual Available
Partial Differential Equations with Numerical Methods
Author: Stig Larsson
Publisher: Springer Science & Business Media
ISBN: 3540887059
Category : Mathematics
Languages : en
Pages : 263
Book Description
The main theme is the integration of the theory of linear PDE and the theory of finite difference and finite element methods. For each type of PDE, elliptic, parabolic, and hyperbolic, the text contains one chapter on the mathematical theory of the differential equation, followed by one chapter on finite difference methods and one on finite element methods. The chapters on elliptic equations are preceded by a chapter on the two-point boundary value problem for ordinary differential equations. Similarly, the chapters on time-dependent problems are preceded by a chapter on the initial-value problem for ordinary differential equations. There is also one chapter on the elliptic eigenvalue problem and eigenfunction expansion. The presentation does not presume a deep knowledge of mathematical and functional analysis. The required background on linear functional analysis and Sobolev spaces is reviewed in an appendix. The book is suitable for advanced undergraduate and beginning graduate students of applied mathematics and engineering.
Publisher: Springer Science & Business Media
ISBN: 3540887059
Category : Mathematics
Languages : en
Pages : 263
Book Description
The main theme is the integration of the theory of linear PDE and the theory of finite difference and finite element methods. For each type of PDE, elliptic, parabolic, and hyperbolic, the text contains one chapter on the mathematical theory of the differential equation, followed by one chapter on finite difference methods and one on finite element methods. The chapters on elliptic equations are preceded by a chapter on the two-point boundary value problem for ordinary differential equations. Similarly, the chapters on time-dependent problems are preceded by a chapter on the initial-value problem for ordinary differential equations. There is also one chapter on the elliptic eigenvalue problem and eigenfunction expansion. The presentation does not presume a deep knowledge of mathematical and functional analysis. The required background on linear functional analysis and Sobolev spaces is reviewed in an appendix. The book is suitable for advanced undergraduate and beginning graduate students of applied mathematics and engineering.
Finite Difference Methods for Ordinary and Partial Differential Equations
Author: Randall J. LeVeque
Publisher: SIAM
ISBN: 9780898717839
Category : Mathematics
Languages : en
Pages : 356
Book Description
This book introduces finite difference methods for both ordinary differential equations (ODEs) and partial differential equations (PDEs) and discusses the similarities and differences between algorithm design and stability analysis for different types of equations. A unified view of stability theory for ODEs and PDEs is presented, and the interplay between ODE and PDE analysis is stressed. The text emphasizes standard classical methods, but several newer approaches also are introduced and are described in the context of simple motivating examples.
Publisher: SIAM
ISBN: 9780898717839
Category : Mathematics
Languages : en
Pages : 356
Book Description
This book introduces finite difference methods for both ordinary differential equations (ODEs) and partial differential equations (PDEs) and discusses the similarities and differences between algorithm design and stability analysis for different types of equations. A unified view of stability theory for ODEs and PDEs is presented, and the interplay between ODE and PDE analysis is stressed. The text emphasizes standard classical methods, but several newer approaches also are introduced and are described in the context of simple motivating examples.
Principles of Partial Differential Equations
Author: Alexander Komech
Publisher: Springer Science & Business Media
ISBN: 1441910956
Category : Mathematics
Languages : en
Pages : 165
Book Description
This concise book covers the classical tools of Partial Differential Equations Theory in today’s science and engineering. The rigorous theoretical presentation includes many hints, and the book contains many illustrative applications from physics.
Publisher: Springer Science & Business Media
ISBN: 1441910956
Category : Mathematics
Languages : en
Pages : 165
Book Description
This concise book covers the classical tools of Partial Differential Equations Theory in today’s science and engineering. The rigorous theoretical presentation includes many hints, and the book contains many illustrative applications from physics.
Applied Partial Differential Equations
Author: Donald W. Trim
Publisher: PWS Publishing Company
ISBN:
Category : Mathematics
Languages : en
Pages : 546
Book Description
The emphasis in this book is placed on techniques for solving partial differential equations found in physics and engineering but discussions on existence and uniqueness of solutions are included. Several different methods of solution are presented, with the primary emphasis on the classical method of separation of variables. Secondary emphasis is placed on transform solutions, as well as on the method of Green's functions.
Publisher: PWS Publishing Company
ISBN:
Category : Mathematics
Languages : en
Pages : 546
Book Description
The emphasis in this book is placed on techniques for solving partial differential equations found in physics and engineering but discussions on existence and uniqueness of solutions are included. Several different methods of solution are presented, with the primary emphasis on the classical method of separation of variables. Secondary emphasis is placed on transform solutions, as well as on the method of Green's functions.
Partial Differential Equations
Author: Walter A. Strauss
Publisher: John Wiley & Sons
ISBN: 0470054565
Category : Mathematics
Languages : en
Pages : 467
Book Description
Our understanding of the fundamental processes of the natural world is based to a large extent on partial differential equations (PDEs). The second edition of Partial Differential Equations provides an introduction to the basic properties of PDEs and the ideas and techniques that have proven useful in analyzing them. It provides the student a broad perspective on the subject, illustrates the incredibly rich variety of phenomena encompassed by it, and imparts a working knowledge of the most important techniques of analysis of the solutions of the equations. In this book mathematical jargon is minimized. Our focus is on the three most classical PDEs: the wave, heat and Laplace equations. Advanced concepts are introduced frequently but with the least possible technicalities. The book is flexibly designed for juniors, seniors or beginning graduate students in science, engineering or mathematics.
Publisher: John Wiley & Sons
ISBN: 0470054565
Category : Mathematics
Languages : en
Pages : 467
Book Description
Our understanding of the fundamental processes of the natural world is based to a large extent on partial differential equations (PDEs). The second edition of Partial Differential Equations provides an introduction to the basic properties of PDEs and the ideas and techniques that have proven useful in analyzing them. It provides the student a broad perspective on the subject, illustrates the incredibly rich variety of phenomena encompassed by it, and imparts a working knowledge of the most important techniques of analysis of the solutions of the equations. In this book mathematical jargon is minimized. Our focus is on the three most classical PDEs: the wave, heat and Laplace equations. Advanced concepts are introduced frequently but with the least possible technicalities. The book is flexibly designed for juniors, seniors or beginning graduate students in science, engineering or mathematics.
An Introduction to Nonlinear Partial Differential Equations
Author: J. David Logan
Publisher: John Wiley & Sons
ISBN: 0470225955
Category : Mathematics
Languages : en
Pages : 416
Book Description
Praise for the First Edition: "This book is well conceived and well written. The author has succeeded in producing a text on nonlinear PDEs that is not only quite readable but also accessible to students from diverse backgrounds." —SIAM Review A practical introduction to nonlinear PDEs and their real-world applications Now in a Second Edition, this popular book on nonlinear partial differential equations (PDEs) contains expanded coverage on the central topics of applied mathematics in an elementary, highly readable format and is accessible to students and researchers in the field of pure and applied mathematics. This book provides a new focus on the increasing use of mathematical applications in the life sciences, while also addressing key topics such as linear PDEs, first-order nonlinear PDEs, classical and weak solutions, shocks, hyperbolic systems, nonlinear diffusion, and elliptic equations. Unlike comparable books that typically only use formal proofs and theory to demonstrate results, An Introduction to Nonlinear Partial Differential Equations, Second Edition takes a more practical approach to nonlinear PDEs by emphasizing how the results are used, why they are important, and how they are applied to real problems. The intertwining relationship between mathematics and physical phenomena is discovered using detailed examples of applications across various areas such as biology, combustion, traffic flow, heat transfer, fluid mechanics, quantum mechanics, and the chemical reactor theory. New features of the Second Edition also include: Additional intermediate-level exercises that facilitate the development of advanced problem-solving skills New applications in the biological sciences, including age-structure, pattern formation, and the propagation of diseases An expanded bibliography that facilitates further investigation into specialized topics With individual, self-contained chapters and a broad scope of coverage that offers instructors the flexibility to design courses to meet specific objectives, An Introduction to Nonlinear Partial Differential Equations, Second Edition is an ideal text for applied mathematics courses at the upper-undergraduate and graduate levels. It also serves as a valuable resource for researchers and professionals in the fields of mathematics, biology, engineering, and physics who would like to further their knowledge of PDEs.
Publisher: John Wiley & Sons
ISBN: 0470225955
Category : Mathematics
Languages : en
Pages : 416
Book Description
Praise for the First Edition: "This book is well conceived and well written. The author has succeeded in producing a text on nonlinear PDEs that is not only quite readable but also accessible to students from diverse backgrounds." —SIAM Review A practical introduction to nonlinear PDEs and their real-world applications Now in a Second Edition, this popular book on nonlinear partial differential equations (PDEs) contains expanded coverage on the central topics of applied mathematics in an elementary, highly readable format and is accessible to students and researchers in the field of pure and applied mathematics. This book provides a new focus on the increasing use of mathematical applications in the life sciences, while also addressing key topics such as linear PDEs, first-order nonlinear PDEs, classical and weak solutions, shocks, hyperbolic systems, nonlinear diffusion, and elliptic equations. Unlike comparable books that typically only use formal proofs and theory to demonstrate results, An Introduction to Nonlinear Partial Differential Equations, Second Edition takes a more practical approach to nonlinear PDEs by emphasizing how the results are used, why they are important, and how they are applied to real problems. The intertwining relationship between mathematics and physical phenomena is discovered using detailed examples of applications across various areas such as biology, combustion, traffic flow, heat transfer, fluid mechanics, quantum mechanics, and the chemical reactor theory. New features of the Second Edition also include: Additional intermediate-level exercises that facilitate the development of advanced problem-solving skills New applications in the biological sciences, including age-structure, pattern formation, and the propagation of diseases An expanded bibliography that facilitates further investigation into specialized topics With individual, self-contained chapters and a broad scope of coverage that offers instructors the flexibility to design courses to meet specific objectives, An Introduction to Nonlinear Partial Differential Equations, Second Edition is an ideal text for applied mathematics courses at the upper-undergraduate and graduate levels. It also serves as a valuable resource for researchers and professionals in the fields of mathematics, biology, engineering, and physics who would like to further their knowledge of PDEs.