Electrostatic Engineering in Wide-bandgap Semiconductors for High Power Applications

Electrostatic Engineering in Wide-bandgap Semiconductors for High Power Applications PDF Author: Wenshen Li
Publisher:
ISBN:
Category :
Languages : en
Pages : 452

Get Book Here

Book Description
Compared with silicon, wide-bandgap semiconductors offer much higher power efficiency for high-power applications, primarily due to the much higher breakdown field. While the performance advantage has already been offered by vertical SiC and lateral GaN-on-Si devices, even higher promises from vertical GaN devices and ultrawide-bandgap semiconductors such as _-Ga2O3 have not been fully delivered. One of the major reasons is the challenge in managing the high electric field in those materials, without established selective-area p-type doping techniques as in GaN, or effective p-type doping alone as in _-Ga2O3. In this dissertation, we tackle this challenge in vertical GaN and Ga2O3 power devices by investigating novel electric-field management techniques and doping-related issues. The first half the work is centered around leakage-current reduction in power Schottky barrier diodes (SBDs) through the reduced surface field (RESURF) effect, which is arguably necessary for kilovolt-class operations. Two novel device structures are designed and implemented, including i) a trench junction-barrier-Schottky diode (JBSD) structure in GaN that possess the desired RESURF effect without needing for selective-area p-doping, and ii) a trench SBD structure in Ga2O3 that achieves significant leakage-current reduction thus a record-high power figure-of-merit of up to 0.95 GW/cm2 among Ga2O3 power devices, but without the need for p-doping. Furthermore, the ideal reverse leakage characteristics in Ga2O3 SBDs is convincingly identified, enabling the calculation of the practical maximum surface electric field in SBDs - an important concept we unambiguously proposed for the first time. The second half of the work is related to vertical power transistors. Using the MBE-regrowth technique, two novel designs of vertical GaN transistors are demonstrated, including GaN trench MOSFETs with regrown channel and GaN PolarMOS - a VDMOS-like transistor with unique polarization-induced (PI) bulk doping. The main challenge in the regrown lateral p-n junctions in these devices is explicitly revealed by interrogating the regrowth interface, where a significant amount of donor-like charges are found. In addition, sidewall activation and incorporations of PI doping in buried p-type layers are realized for voltage-blocking purposes. In Ga2O3, vertical fin power transistors are developed, showing a high breakdown voltage of over 2.6 kV and a normally-off operation without needing for p-doping. Overall, while p-type doping is extremely beneficial for wide-bandgap vertical power devices, it might not be absolutely necessary, provided that proper electrostatic designs and alternative voltage-blocking junctions are effectively implemented.

Electrostatic Engineering in Wide-bandgap Semiconductors for High Power Applications

Electrostatic Engineering in Wide-bandgap Semiconductors for High Power Applications PDF Author: Wenshen Li
Publisher:
ISBN:
Category :
Languages : en
Pages : 452

Get Book Here

Book Description
Compared with silicon, wide-bandgap semiconductors offer much higher power efficiency for high-power applications, primarily due to the much higher breakdown field. While the performance advantage has already been offered by vertical SiC and lateral GaN-on-Si devices, even higher promises from vertical GaN devices and ultrawide-bandgap semiconductors such as _-Ga2O3 have not been fully delivered. One of the major reasons is the challenge in managing the high electric field in those materials, without established selective-area p-type doping techniques as in GaN, or effective p-type doping alone as in _-Ga2O3. In this dissertation, we tackle this challenge in vertical GaN and Ga2O3 power devices by investigating novel electric-field management techniques and doping-related issues. The first half the work is centered around leakage-current reduction in power Schottky barrier diodes (SBDs) through the reduced surface field (RESURF) effect, which is arguably necessary for kilovolt-class operations. Two novel device structures are designed and implemented, including i) a trench junction-barrier-Schottky diode (JBSD) structure in GaN that possess the desired RESURF effect without needing for selective-area p-doping, and ii) a trench SBD structure in Ga2O3 that achieves significant leakage-current reduction thus a record-high power figure-of-merit of up to 0.95 GW/cm2 among Ga2O3 power devices, but without the need for p-doping. Furthermore, the ideal reverse leakage characteristics in Ga2O3 SBDs is convincingly identified, enabling the calculation of the practical maximum surface electric field in SBDs - an important concept we unambiguously proposed for the first time. The second half of the work is related to vertical power transistors. Using the MBE-regrowth technique, two novel designs of vertical GaN transistors are demonstrated, including GaN trench MOSFETs with regrown channel and GaN PolarMOS - a VDMOS-like transistor with unique polarization-induced (PI) bulk doping. The main challenge in the regrown lateral p-n junctions in these devices is explicitly revealed by interrogating the regrowth interface, where a significant amount of donor-like charges are found. In addition, sidewall activation and incorporations of PI doping in buried p-type layers are realized for voltage-blocking purposes. In Ga2O3, vertical fin power transistors are developed, showing a high breakdown voltage of over 2.6 kV and a normally-off operation without needing for p-doping. Overall, while p-type doping is extremely beneficial for wide-bandgap vertical power devices, it might not be absolutely necessary, provided that proper electrostatic designs and alternative voltage-blocking junctions are effectively implemented.

Wide Bandgap Semiconductors for Power Electronics

Wide Bandgap Semiconductors for Power Electronics PDF Author: Peter Wellmann
Publisher: John Wiley & Sons
ISBN: 3527346716
Category : Technology & Engineering
Languages : en
Pages : 743

Get Book Here

Book Description
Wide Bandgap Semiconductors for Power Electronic A guide to the field of wide bandgap semiconductor technology Wide Bandgap Semiconductors for Power Electronics is a comprehensive and authoritative guide to wide bandgap materials silicon carbide, gallium nitride, diamond and gallium(III) oxide. With contributions from an international panel of experts, the book offers detailed coverage of the growth of these materials, their characterization, and how they are used in a variety of power electronics devices such as transistors and diodes and in the areas of quantum information and hybrid electric vehicles. The book is filled with the most recent developments in the burgeoning field of wide bandgap semiconductor technology and includes information from cutting-edge semiconductor companies as well as material from leading universities and research institutions. By taking both scholarly and industrial perspectives, the book is designed to be a useful resource for scientists, academics, and corporate researchers and developers. This important book: Presents a review of wide bandgap materials and recent developments Links the high potential of wide bandgap semiconductors with the technological implementation capabilities Offers a unique combination of academic and industrial perspectives Meets the demand for a resource that addresses wide bandgap materials in a comprehensive manner Written for materials scientists, semiconductor physicists, electrical engineers, Wide Bandgap Semiconductors for Power Electronics provides a state of the art guide to the technology and application of SiC and related wide bandgap materials.

Wide Bandgap Semiconductor Power Devices

Wide Bandgap Semiconductor Power Devices PDF Author: B. Jayant Baliga
Publisher: Woodhead Publishing
ISBN: 0081023073
Category : Technology & Engineering
Languages : en
Pages : 418

Get Book Here

Book Description
Wide Bandgap Semiconductor Power Devices: Materials, Physics, Design and Applications provides readers with a single resource on why these devices are superior to existing silicon devices. The book lays the groundwork for an understanding of an array of applications and anticipated benefits in energy savings. Authored by the Founder of the Power Semiconductor Research Center at North Carolina State University (and creator of the IGBT device), Dr. B. Jayant Baliga is one of the highest regarded experts in the field. He thus leads this team who comprehensively review the materials, device physics, design considerations and relevant applications discussed. Comprehensively covers power electronic devices, including materials (both gallium nitride and silicon carbide), physics, design considerations, and the most promising applications Addresses the key challenges towards the realization of wide bandgap power electronic devices, including materials defects, performance and reliability Provides the benefits of wide bandgap semiconductors, including opportunities for cost reduction and social impact

Disruptive Wide Bandgap Semiconductors, Related Technologies, and Their Applications

Disruptive Wide Bandgap Semiconductors, Related Technologies, and Their Applications PDF Author: Yogesh Kumar Sharma
Publisher: BoD – Books on Demand
ISBN: 1789236681
Category : Technology & Engineering
Languages : en
Pages : 154

Get Book Here

Book Description
SiC and GaN devices have been around for some time. The first dedicated international conference on SiC and related devices, "ICSCRM," was held in Washington, DC, in 1987. But only recently, the commercialization of SiC and GaN devices has happened. Due to its material properties, Si as a semiconductor has limitations in high-temperature, high-voltage, and high-frequency regimes. With the help of SiC and GaN devices, it is possible to realize more efficient power systems. Devices manufactured from SiC and GaN have already been impacting different areas with their ability to outperform Si devices. Some of the examples are the telecommunications, automotive/locomotive, power, and renewable energy industries. To achieve the carbon emission targets set by different countries, it is inevitable to use these new technologies. This book attempts to cover all the important facets related to wide bandgap semiconductor technology, including new challenges posed by it. This book is intended for graduate students, researchers, engineers, and technology experts who have been working in the exciting fields of SiC and GaN power devices.

Wide Bandgap Based Devices

Wide Bandgap Based Devices PDF Author: Farid Medjdoub
Publisher: MDPI
ISBN: 3036505660
Category : Technology & Engineering
Languages : en
Pages : 242

Get Book Here

Book Description
Emerging wide bandgap (WBG) semiconductors hold the potential to advance the global industry in the same way that, more than 50 years ago, the invention of the silicon (Si) chip enabled the modern computer era. SiC- and GaN-based devices are starting to become more commercially available. Smaller, faster, and more efficient than their counterpart Si-based components, these WBG devices also offer greater expected reliability in tougher operating conditions. Furthermore, in this frame, a new class of microelectronic-grade semiconducting materials that have an even larger bandgap than the previously established wide bandgap semiconductors, such as GaN and SiC, have been created, and are thus referred to as “ultra-wide bandgap” materials. These materials, which include AlGaN, AlN, diamond, Ga2O3, and BN, offer theoretically superior properties, including a higher critical breakdown field, higher temperature operation, and potentially higher radiation tolerance. These attributes, in turn, make it possible to use revolutionary new devices for extreme environments, such as high-efficiency power transistors, because of the improved Baliga figure of merit, ultra-high voltage pulsed power switches, high-efficiency UV-LEDs, and electronics. This Special Issue aims to collect high quality research papers, short communications, and review articles that focus on wide bandgap device design, fabrication, and advanced characterization. The Special Issue will also publish selected papers from the 43rd Workshop on Compound Semiconductor Devices and Integrated Circuits, held in France (WOCSDICE 2019), which brings together scientists and engineers working in the area of III–V, and other compound semiconductor devices and integrated circuits. In particular, the following topics are addressed: – GaN- and SiC-based devices for power and optoelectronic applications – Ga2O3 substrate development, and Ga2O3 thin film growth, doping, and devices – AlN-based emerging material and devices – BN epitaxial growth, characterization, and devices

Wide-bandgap Semiconductors for High Power, High Frequency and High Temperature Applications

Wide-bandgap Semiconductors for High Power, High Frequency and High Temperature Applications PDF Author:
Publisher:
ISBN:
Category : Power semiconductors
Languages : en
Pages : 584

Get Book Here

Book Description


Wide Bandgap Semiconductors

Wide Bandgap Semiconductors PDF Author: Kiyoshi Takahashi
Publisher: Springer Science & Business Media
ISBN: 3540472355
Category : Technology & Engineering
Languages : en
Pages : 481

Get Book Here

Book Description
This book offers a comprehensive overview of the development, current state, and future prospects of wide bandgap semiconductor materials and related optoelectronics devices. With 901 references, 333 figures and 21 tables, this book will serve as a one-stop source of knowledge on wide bandgap semiconductors and related optoelectronics devices.

Characterization of Wide Bandgap Power Semiconductor Devices

Characterization of Wide Bandgap Power Semiconductor Devices PDF Author: Fei Wang
Publisher: Institution of Engineering and Technology
ISBN: 1785614916
Category : Technology & Engineering
Languages : en
Pages : 348

Get Book Here

Book Description
At the heart of modern power electronics converters are power semiconductor switching devices. The emergence of wide bandgap (WBG) semiconductor devices, including silicon carbide and gallium nitride, promises power electronics converters with higher efficiency, smaller size, lighter weight, and lower cost than converters using the established silicon-based devices. However, WBG devices pose new challenges for converter design and require more careful characterization, in particular due to their fast switching speed and more stringent need for protection. Characterization of Wide Bandgap Power Semiconductor Devices presents comprehensive methods with examples for the characterization of this important class of power devices. After an introduction, the book covers pulsed static characterization; junction capacitance characterization; fundamentals of dynamic characterization; gate drive for dynamic characterization; layout design and parasitic management; protection design for double pulse test; measurement and data processing for dynamic characterization; cross-talk consideration; impact of three-phase system; and topology considerations.

Wide Bandgap Semiconductor Electronics And Devices

Wide Bandgap Semiconductor Electronics And Devices PDF Author: Uttam Singisetti
Publisher: World Scientific
ISBN: 9811216495
Category : Technology & Engineering
Languages : en
Pages : 258

Get Book Here

Book Description
'This book is more suited for researchers already familiar with WBS who are interested in developing new WBG materials and devices since it provides the latest developments in new materials and processes and trends for WBS and UWBS technology.'IEEE Electrical Insulation MagazineWith the dawn of Gallium Oxide (Ga2O₃) and Aluminum Gallium Nitride (AlGaN) electronics and the commercialization of Gallium Nitride (GaN) and Silicon Carbide (SiC) based devices, the field of wide bandgap materials and electronics has never been more vibrant and exciting than it is now. Wide bandgap semiconductors have had a strong presence in the research and development arena for many years. Recently, the increasing demand for high efficiency power electronics and high speed communication electronics, together with the maturity of the synthesis and fabrication of wide bandgap semicon-ductors, has catapulted wide bandgap electronics and optoelectronics into the mainstream.Wide bandgap semiconductors exhibit excellent material properties, which can potentially enable power device operation at higher efficiency, higher temperatures, voltages, and higher switching speeds than current Si technology. This edited volume will serve as a useful reference for researchers in this field — newcomers and experienced alike.This book discusses a broad range of topics including fundamental transport studies, growth of high-quality films, advanced materials characterization, device modeling, high frequency, high voltage electronic devices and optical devices written by the experts in their respective fields. They also span the whole spectrum of wide bandgap materials including AlGaN, Ga2O₃and diamond.

Ultra-wide Bandgap Semiconductor Materials

Ultra-wide Bandgap Semiconductor Materials PDF Author: Meiyong Liao
Publisher: Elsevier
ISBN: 0128172568
Category : Technology & Engineering
Languages : en
Pages : 503

Get Book Here

Book Description
Ultra-wide Bandgap Semiconductors (UWBG) covers the most recent progress in UWBG materials, including sections on high-Al-content AlGaN, diamond, B-Ga2O3, and boron nitrides. The coverage of these materials is comprehensive, addressing materials growth, physics properties, doping, device design, fabrication and performance. The most relevant and important applications are covered, including power electronics, RF electronics and DUV optoelectronics. There is also a chapter on novel structures based on UWBG, such as the heterojunctions, the low-dimensional structures, and their devices. This book is ideal for materials scientists and engineers in academia and R&D searching for materials superior to silicon carbide and gallium nitride. Provides a one-stop resource on the most promising ultra-wide bandgap semiconducting materials, including high-Al-content AlGaN, diamond, β-Ga2O3, boron nitrides, and low-dimensional materials Presents comprehensive coverage, from materials growth and properties, to device design, fabrication and performance Features the most relevant applications, including power electronics, RF electronics and DUV optoelectronics