Author: Walter F. Smith
Publisher: CRC Press
ISBN: 1498778682
Category : Science
Languages : en
Pages : 451
Book Description
This textbook provides the knowledge and skills needed for thorough understanding of the most important methods and ways of thinking in experimental physics. The reader learns to design, assemble, and debug apparatus, to use it to take meaningful data, and to think carefully about the story told by the data. Key Features: Efficiently helps students grow into independent experimentalists through a combination of structured yet thought-provoking and challenging exercises, student-designed experiments, and guided but open-ended exploration. Provides solid coverage of fundamental background information, explained clearly for undergraduates, such as ground loops, optical alignment techniques, scientific communication, and data acquisition using LabVIEW, Python, or Arduino. Features carefully designed lab experiences to teach fundamentals, including analog electronics and low noise measurements, digital electronics, microcontrollers, FPGAs, computer interfacing, optics, vacuum techniques, and particle detection methods. Offers a broad range of advanced experiments for each major area of physics, from condensed matter to particle physics. Also provides clear guidance for student development of projects not included here. Provides a detailed Instructor’s Manual for every lab, so that the instructor can confidently teach labs outside their own research area.
Experimental Physics
Author: Walter F. Smith
Publisher: CRC Press
ISBN: 1498778682
Category : Science
Languages : en
Pages : 451
Book Description
This textbook provides the knowledge and skills needed for thorough understanding of the most important methods and ways of thinking in experimental physics. The reader learns to design, assemble, and debug apparatus, to use it to take meaningful data, and to think carefully about the story told by the data. Key Features: Efficiently helps students grow into independent experimentalists through a combination of structured yet thought-provoking and challenging exercises, student-designed experiments, and guided but open-ended exploration. Provides solid coverage of fundamental background information, explained clearly for undergraduates, such as ground loops, optical alignment techniques, scientific communication, and data acquisition using LabVIEW, Python, or Arduino. Features carefully designed lab experiences to teach fundamentals, including analog electronics and low noise measurements, digital electronics, microcontrollers, FPGAs, computer interfacing, optics, vacuum techniques, and particle detection methods. Offers a broad range of advanced experiments for each major area of physics, from condensed matter to particle physics. Also provides clear guidance for student development of projects not included here. Provides a detailed Instructor’s Manual for every lab, so that the instructor can confidently teach labs outside their own research area.
Publisher: CRC Press
ISBN: 1498778682
Category : Science
Languages : en
Pages : 451
Book Description
This textbook provides the knowledge and skills needed for thorough understanding of the most important methods and ways of thinking in experimental physics. The reader learns to design, assemble, and debug apparatus, to use it to take meaningful data, and to think carefully about the story told by the data. Key Features: Efficiently helps students grow into independent experimentalists through a combination of structured yet thought-provoking and challenging exercises, student-designed experiments, and guided but open-ended exploration. Provides solid coverage of fundamental background information, explained clearly for undergraduates, such as ground loops, optical alignment techniques, scientific communication, and data acquisition using LabVIEW, Python, or Arduino. Features carefully designed lab experiences to teach fundamentals, including analog electronics and low noise measurements, digital electronics, microcontrollers, FPGAs, computer interfacing, optics, vacuum techniques, and particle detection methods. Offers a broad range of advanced experiments for each major area of physics, from condensed matter to particle physics. Also provides clear guidance for student development of projects not included here. Provides a detailed Instructor’s Manual for every lab, so that the instructor can confidently teach labs outside their own research area.
Electronics in Experimental Physics
Author: D. V. Skobel tsyn
Publisher: Springer Science & Business Media
ISBN: 1475751095
Category : Technology & Engineering
Languages : en
Pages : 108
Book Description
Publisher: Springer Science & Business Media
ISBN: 1475751095
Category : Technology & Engineering
Languages : en
Pages : 108
Book Description
Physics Experiments with Arduino and Smartphones
Author: Giovanni Organtini
Publisher: Springer Nature
ISBN: 3030651401
Category : Technology & Engineering
Languages : en
Pages : 404
Book Description
This book on the use of Arduino and Smartphones in physics experiments, with a focus on mechanics, introduces various techniques by way of examples. The main aim is to teach students how to take meaningful measurements and how to interpret them. Each topic is introduced by an experiment. Those at the beginning of the book are rather simple to build and analyze. As the lessons proceed, the experiments become more refined and new techniques are introduced. Rather than providing recipes to be adopted while taking measurements, the need for new concepts is raised by observing the results of an experiment. A formal justification is given only after a concept has been introduced experimentally. The discussion extends beyond the taking of measurements to their meaning in terms of physics, the importance of what is learned from the laws that are derived, and their limits. Stress is placed on the importance of careful design of experiments as to reduce systematic errors and on good practices to avoid common mistakes. Data are always analyzed using computer software. C-like structures are introduced in teaching how to program Arduino, while data collection and analysis is done using Python. Several methods of graphical representation of data are used.
Publisher: Springer Nature
ISBN: 3030651401
Category : Technology & Engineering
Languages : en
Pages : 404
Book Description
This book on the use of Arduino and Smartphones in physics experiments, with a focus on mechanics, introduces various techniques by way of examples. The main aim is to teach students how to take meaningful measurements and how to interpret them. Each topic is introduced by an experiment. Those at the beginning of the book are rather simple to build and analyze. As the lessons proceed, the experiments become more refined and new techniques are introduced. Rather than providing recipes to be adopted while taking measurements, the need for new concepts is raised by observing the results of an experiment. A formal justification is given only after a concept has been introduced experimentally. The discussion extends beyond the taking of measurements to their meaning in terms of physics, the importance of what is learned from the laws that are derived, and their limits. Stress is placed on the importance of careful design of experiments as to reduce systematic errors and on good practices to avoid common mistakes. Data are always analyzed using computer software. C-like structures are introduced in teaching how to program Arduino, while data collection and analysis is done using Python. Several methods of graphical representation of data are used.
Techniques for Nuclear and Particle Physics Experiments
Author: William R. Leo
Publisher: Springer Science & Business Media
ISBN: 3642579205
Category : Science
Languages : en
Pages : 385
Book Description
A treatment of the experimental techniques and instrumentation most often used in nuclear and particle physics experiments as well as in various other experiments, providing useful results and formulae, technical know-how and informative details. This second edition has been revised, while sections on Cherenkov radiation and radiation protection have been updated and extended.
Publisher: Springer Science & Business Media
ISBN: 3642579205
Category : Science
Languages : en
Pages : 385
Book Description
A treatment of the experimental techniques and instrumentation most often used in nuclear and particle physics experiments as well as in various other experiments, providing useful results and formulae, technical know-how and informative details. This second edition has been revised, while sections on Cherenkov radiation and radiation protection have been updated and extended.
Molecular Electronics
Author: Juan Carlos Cuevas
Publisher: World Scientific
ISBN: 9814282588
Category : Science
Languages : en
Pages : 724
Book Description
This book provides a comprehensive overview of the rapidly developing field of molecular electronics. It focuses on our present understanding of the electrical conduction in single-molecule circuits and provides a thorough introduction to the experimental techniques and theoretical concepts. It will also constitute as the first textbook-like introduction to both the experiment and theory of electronic transport through single atoms and molecules. In this sense, this publication will prove invaluable to both researchers and students interested in the field of nanoelectronics and nanoscience in general. Molecular Electronics is self-contained and unified in its presentation. It may be used as a textbook on nanoelectronics by graduate students and advanced undergraduates studying physics and chemistry. In addition, included are previously unpublished material that will help researchers gain a deeper understanding into the basic concepts involved in the field of molecular electronics.
Publisher: World Scientific
ISBN: 9814282588
Category : Science
Languages : en
Pages : 724
Book Description
This book provides a comprehensive overview of the rapidly developing field of molecular electronics. It focuses on our present understanding of the electrical conduction in single-molecule circuits and provides a thorough introduction to the experimental techniques and theoretical concepts. It will also constitute as the first textbook-like introduction to both the experiment and theory of electronic transport through single atoms and molecules. In this sense, this publication will prove invaluable to both researchers and students interested in the field of nanoelectronics and nanoscience in general. Molecular Electronics is self-contained and unified in its presentation. It may be used as a textbook on nanoelectronics by graduate students and advanced undergraduates studying physics and chemistry. In addition, included are previously unpublished material that will help researchers gain a deeper understanding into the basic concepts involved in the field of molecular electronics.
Methods of Experimental Physics
Author: M. I. Pergament
Publisher: CRC Press
ISBN: 0750306084
Category : Science
Languages : en
Pages : 366
Book Description
Based on the modern approach of information theory, this book presents novel experimental techniques, tools, and data processing methods for physics applications. It shows readers how to plan and conduct experiments, design and certify measuring equipment, and process and interpret the experimental data. Drawing on his extensive experience in experimental research, the author discusses the theory of systems for measuring and recording data, the equipment and methods used for studying fast processes, the basic methods of experimental physics, and the methods for interpretation and data processing. Bringing together approaches that have previously been scattered in the literature, the book covers high-speed photography, Fourier optics, spectroscopy, interferometry, holography, electromagnetic waves, X-rays, and corpuscular investigation.
Publisher: CRC Press
ISBN: 0750306084
Category : Science
Languages : en
Pages : 366
Book Description
Based on the modern approach of information theory, this book presents novel experimental techniques, tools, and data processing methods for physics applications. It shows readers how to plan and conduct experiments, design and certify measuring equipment, and process and interpret the experimental data. Drawing on his extensive experience in experimental research, the author discusses the theory of systems for measuring and recording data, the equipment and methods used for studying fast processes, the basic methods of experimental physics, and the methods for interpretation and data processing. Bringing together approaches that have previously been scattered in the literature, the book covers high-speed photography, Fourier optics, spectroscopy, interferometry, holography, electromagnetic waves, X-rays, and corpuscular investigation.
Procedures in Experimental Physics
Author: John Strong
Publisher:
ISBN:
Category : Physics
Languages : en
Pages : 664
Book Description
Publisher:
ISBN:
Category : Physics
Languages : en
Pages : 664
Book Description
Experimental Techniques In Condensed Matter Physics At Low Temperatures
Author: Robert C. Richardson
Publisher: CRC Press
ISBN: 0429973489
Category : Science
Languages : en
Pages : 276
Book Description
This practical book provides recipes for the construction of devices used in low temperature experimentation. It emphasizes what works, rather than what might be the optimum method, and lists current sources for purchasing components and equipment.
Publisher: CRC Press
ISBN: 0429973489
Category : Science
Languages : en
Pages : 276
Book Description
This practical book provides recipes for the construction of devices used in low temperature experimentation. It emphasizes what works, rather than what might be the optimum method, and lists current sources for purchasing components and equipment.
Introduction to Experimental Particle Physics
Author: Richard Clinton Fernow
Publisher: Cambridge University Press
ISBN: 9780521379403
Category : Science
Languages : en
Pages : 436
Book Description
This book brings together the most important topics in experimental particle physics over the past forty years to give a brief but balanced overview of the subject. The author begins by reviewing particle physics and discussing electromagnetic and nuclear interactions. He then goes on to discuss three nearly universal aspects of particle physics experiments: beams, targets, and fast electronics. The second part of the book treats in detail the properties of various types of particle detector, such as scintillation counters, Cerenkov counters, proportional chambers, drift chambers, sampling calorimeters, and specialized detectors. Wherever possible the author attempts to enumerate the advantages and disadvantages of performance. Finally, he discusses aspects of specific experiments, such as properties of triggers, types of measurement, spectrometers, and the integration of detectors into coherent systems. Throughout the book, each chapter begins with a discussion of the basic principles involved, followed by selective examples.
Publisher: Cambridge University Press
ISBN: 9780521379403
Category : Science
Languages : en
Pages : 436
Book Description
This book brings together the most important topics in experimental particle physics over the past forty years to give a brief but balanced overview of the subject. The author begins by reviewing particle physics and discussing electromagnetic and nuclear interactions. He then goes on to discuss three nearly universal aspects of particle physics experiments: beams, targets, and fast electronics. The second part of the book treats in detail the properties of various types of particle detector, such as scintillation counters, Cerenkov counters, proportional chambers, drift chambers, sampling calorimeters, and specialized detectors. Wherever possible the author attempts to enumerate the advantages and disadvantages of performance. Finally, he discusses aspects of specific experiments, such as properties of triggers, types of measurement, spectrometers, and the integration of detectors into coherent systems. Throughout the book, each chapter begins with a discussion of the basic principles involved, followed by selective examples.
Basic Digital Electronics
Author: J.A. Strong
Publisher: Springer Science & Business Media
ISBN: 940113118X
Category : Science
Languages : en
Pages : 231
Book Description
Modern electronics is the most visible result of research in solid state physics. Transistors and integrated circuits are used everywhere in ever increasing numbers. The microprocessor controlled coffee-pot exists. Most experimental physicists, and, indeed, experimental scientists in most disciplines, study their subject with the aid of apparatus containing significant amounts of electronics and much of that electronics is digital. In order to design experiments and apparatus or simply to understand how a piece of equipment works, an under standing of electronics has become increasingly important. In recognition that electronics has pervaded so many areas, courses in digital electronics are now a recommended part of physics and many other science degree courses. At the introductory level, digital electronics is, primarily, a practical subject with relatively few basic concepts and any complex ity arises from the coupling together of many simple circuits and the extensive use of feedback. Designing an electronic circuit and then getting it to work correctly provides an experience, and a sense of achievement, which is significantly different from most undergradu ate work as it more closely resembles project work than standard laboratory practicals.
Publisher: Springer Science & Business Media
ISBN: 940113118X
Category : Science
Languages : en
Pages : 231
Book Description
Modern electronics is the most visible result of research in solid state physics. Transistors and integrated circuits are used everywhere in ever increasing numbers. The microprocessor controlled coffee-pot exists. Most experimental physicists, and, indeed, experimental scientists in most disciplines, study their subject with the aid of apparatus containing significant amounts of electronics and much of that electronics is digital. In order to design experiments and apparatus or simply to understand how a piece of equipment works, an under standing of electronics has become increasingly important. In recognition that electronics has pervaded so many areas, courses in digital electronics are now a recommended part of physics and many other science degree courses. At the introductory level, digital electronics is, primarily, a practical subject with relatively few basic concepts and any complex ity arises from the coupling together of many simple circuits and the extensive use of feedback. Designing an electronic circuit and then getting it to work correctly provides an experience, and a sense of achievement, which is significantly different from most undergradu ate work as it more closely resembles project work than standard laboratory practicals.