Author: Victor Antonov
Publisher: Springer Science & Business Media
ISBN: 1402019068
Category : Science
Languages : en
Pages : 538
Book Description
The aim of this book is to review recent achievements in thetheoretical investigations of the electronic structure, optical, magneto-optical (MO), and x-ray magnetic circular dichroism (XMCD)properties of compounds and Multilayered structures.Chapter 1 of this book is of an introductory character and presentsthe theoretical foundations of the band theory of solids such as thedensity functional theory for ground state properties of solidsincluding local density approximation (LDA). It also presents somemodifications to the LDA, such as gradient correction, self-interaction correction, LDA+U method, orbital polarizationcorrection, GW approximation, and dynamical mean- field theory. Thedescription of the magneto-optical effects and linear response theoryare also presented.The book describes the MO properties for a number of 3d materials, such as elemental ferromagnetic metals (Fe, Co and Ni) andparamagnetic metals in external magnetic fields (Pd and Pt), someimportant 3d compounds such as XPt3 (X=V, Cr, Mn, Fe and Co), Heusleralloys, chromium spinel chalcogenides, MnB and strongly correlatedmagnetite Fe304. It also describes the recent achievements in both theexperimental and theoretical investigations of the electronicstructure, optical and MO properties of transition metal multilayeredstructures (MLS).The book presents also the MO properties of f band ferromagneticmaterials: Tm, Nd, Sm, Ce and La monochalcogenides, some important Y
Electronic Structure and Magneto-Optical Properties of Solids
Author: Victor Antonov
Publisher: Springer Science & Business Media
ISBN: 1402019068
Category : Science
Languages : en
Pages : 538
Book Description
The aim of this book is to review recent achievements in thetheoretical investigations of the electronic structure, optical, magneto-optical (MO), and x-ray magnetic circular dichroism (XMCD)properties of compounds and Multilayered structures.Chapter 1 of this book is of an introductory character and presentsthe theoretical foundations of the band theory of solids such as thedensity functional theory for ground state properties of solidsincluding local density approximation (LDA). It also presents somemodifications to the LDA, such as gradient correction, self-interaction correction, LDA+U method, orbital polarizationcorrection, GW approximation, and dynamical mean- field theory. Thedescription of the magneto-optical effects and linear response theoryare also presented.The book describes the MO properties for a number of 3d materials, such as elemental ferromagnetic metals (Fe, Co and Ni) andparamagnetic metals in external magnetic fields (Pd and Pt), someimportant 3d compounds such as XPt3 (X=V, Cr, Mn, Fe and Co), Heusleralloys, chromium spinel chalcogenides, MnB and strongly correlatedmagnetite Fe304. It also describes the recent achievements in both theexperimental and theoretical investigations of the electronicstructure, optical and MO properties of transition metal multilayeredstructures (MLS).The book presents also the MO properties of f band ferromagneticmaterials: Tm, Nd, Sm, Ce and La monochalcogenides, some important Y
Publisher: Springer Science & Business Media
ISBN: 1402019068
Category : Science
Languages : en
Pages : 538
Book Description
The aim of this book is to review recent achievements in thetheoretical investigations of the electronic structure, optical, magneto-optical (MO), and x-ray magnetic circular dichroism (XMCD)properties of compounds and Multilayered structures.Chapter 1 of this book is of an introductory character and presentsthe theoretical foundations of the band theory of solids such as thedensity functional theory for ground state properties of solidsincluding local density approximation (LDA). It also presents somemodifications to the LDA, such as gradient correction, self-interaction correction, LDA+U method, orbital polarizationcorrection, GW approximation, and dynamical mean- field theory. Thedescription of the magneto-optical effects and linear response theoryare also presented.The book describes the MO properties for a number of 3d materials, such as elemental ferromagnetic metals (Fe, Co and Ni) andparamagnetic metals in external magnetic fields (Pd and Pt), someimportant 3d compounds such as XPt3 (X=V, Cr, Mn, Fe and Co), Heusleralloys, chromium spinel chalcogenides, MnB and strongly correlatedmagnetite Fe304. It also describes the recent achievements in both theexperimental and theoretical investigations of the electronicstructure, optical and MO properties of transition metal multilayeredstructures (MLS).The book presents also the MO properties of f band ferromagneticmaterials: Tm, Nd, Sm, Ce and La monochalcogenides, some important Y
The Physical Principles of Magneto-optical Recording
Author: Masud Mansuripur
Publisher: Cambridge University Press
ISBN: 9780521634182
Category : Science
Languages : en
Pages : 780
Book Description
First-time paperback of successful and well-reviewed book; for graduate students and researchers in physics and engineering.
Publisher: Cambridge University Press
ISBN: 9780521634182
Category : Science
Languages : en
Pages : 780
Book Description
First-time paperback of successful and well-reviewed book; for graduate students and researchers in physics and engineering.
Optical Properties of Solids
Author: Frederick Wooten
Publisher: Academic Press
ISBN: 1483220761
Category : Science
Languages : en
Pages : 273
Book Description
Optical Properties of Solids covers the important concepts of intrinsic optical properties and photoelectric emission. The book starts by providing an introduction to the fundamental optical spectra of solids. The text then discusses Maxwell's equations and the dielectric function; absorption and dispersion; and the theory of free-electron metals. The quantum mechanical theory of direct and indirect transitions between bands; the applications of dispersion relations; and the derivation of an expression for the dielectric function in the self-consistent field approximation are also encompassed. The book further tackles current-current correlations; the fluctuation-dissipation theorem; and the effect of surface plasmons on optical properties and photoemission. People involved in the study of the optical properties of solids will find the book invaluable.
Publisher: Academic Press
ISBN: 1483220761
Category : Science
Languages : en
Pages : 273
Book Description
Optical Properties of Solids covers the important concepts of intrinsic optical properties and photoelectric emission. The book starts by providing an introduction to the fundamental optical spectra of solids. The text then discusses Maxwell's equations and the dielectric function; absorption and dispersion; and the theory of free-electron metals. The quantum mechanical theory of direct and indirect transitions between bands; the applications of dispersion relations; and the derivation of an expression for the dielectric function in the self-consistent field approximation are also encompassed. The book further tackles current-current correlations; the fluctuation-dissipation theorem; and the effect of surface plasmons on optical properties and photoemission. People involved in the study of the optical properties of solids will find the book invaluable.
Electronic Structure and Optical Properties of Semiconductors
Author: Marvin L. Cohen
Publisher: Springer Science & Business Media
ISBN: 364297080X
Category : Science
Languages : en
Pages : 273
Book Description
We began planning and writing this book in the late 1970s at the suggestion of Manuel Cardona and Helmut Lotsch. We also received considerable en couragement and stimulation from colleagues. Some said there was a need for instructional material in this area while others emphasized the utility of a research text. We tried to strike a compromise. The figures, tables, and references are included to enable researchers to obtain quickly essential information in this area of semiconductor research. For instructors and stu dents, we attempt to cover some basic ideas about electronic structure and semiconductor physics with applications to real, rather than model, solids. We wish to thank our colleagues and collaborators whose research re sults and ideas are presented here. Special thanks are due to Jim Phillips who influenced us both during our formative years and afterwards. We are grateful to Sari Yamagishi for her patience and skill with the typing and production of the manuscript. Finally, we acknowledge the great patience of Helmut Lotsch and Manuel Cardona. Berkeley, CA M.L. Cohen Minneapolis, MN, J.R. Chelikowsky March 1988 VII Contents 1. Introduction............................................... 1 2. Theoretical Concepts and Methods ..................... 4 2.1 The One-Electron Model and Band Structure............ 7 2.2 Properties of En(k) ...................................... 11 3. Pseudopotentials. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 . . . . . . . . . . . . 3.1 The Empirical Pseudopotential Method.................. 20 3.2 Self-Consistent and Ab Initio Pseudopotentials ........... 25 4. Response Functions and Density of States .............. 30 4.1 Charge Density and Bonding ................... . . . . . . . . . 38 .
Publisher: Springer Science & Business Media
ISBN: 364297080X
Category : Science
Languages : en
Pages : 273
Book Description
We began planning and writing this book in the late 1970s at the suggestion of Manuel Cardona and Helmut Lotsch. We also received considerable en couragement and stimulation from colleagues. Some said there was a need for instructional material in this area while others emphasized the utility of a research text. We tried to strike a compromise. The figures, tables, and references are included to enable researchers to obtain quickly essential information in this area of semiconductor research. For instructors and stu dents, we attempt to cover some basic ideas about electronic structure and semiconductor physics with applications to real, rather than model, solids. We wish to thank our colleagues and collaborators whose research re sults and ideas are presented here. Special thanks are due to Jim Phillips who influenced us both during our formative years and afterwards. We are grateful to Sari Yamagishi for her patience and skill with the typing and production of the manuscript. Finally, we acknowledge the great patience of Helmut Lotsch and Manuel Cardona. Berkeley, CA M.L. Cohen Minneapolis, MN, J.R. Chelikowsky March 1988 VII Contents 1. Introduction............................................... 1 2. Theoretical Concepts and Methods ..................... 4 2.1 The One-Electron Model and Band Structure............ 7 2.2 Properties of En(k) ...................................... 11 3. Pseudopotentials. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 . . . . . . . . . . . . 3.1 The Empirical Pseudopotential Method.................. 20 3.2 Self-Consistent and Ab Initio Pseudopotentials ........... 25 4. Response Functions and Density of States .............. 30 4.1 Charge Density and Bonding ................... . . . . . . . . . 38 .
X-ray Scattering and Absorption by Magnetic Materials
Author: Stephen W. Lovesey
Publisher: Oxford University Press on Demand
ISBN: 9780198517375
Category : Science
Languages : en
Pages : 377
Book Description
This is the first book devoted to the use of X-ray beam techniques to study magnetic properties of materials. It covers both experimental and theoretical issues. The three main topics are dichroism, elastic scattering (both non-resonant and resonant diffraction) and spectroscopy. In thepast decade there has been an expansion of activity in the field, driven by the availability of intense, tuneable and highly polarized X-ray beams from synchrtron facilities. The pace of events is likely to continue with the start of new (3rd generation) facilities, including the EuropeanSynchrotron Radiation Facility, Grenoble, and the Advanced Light Source, Argonne National Laboratory. USA.
Publisher: Oxford University Press on Demand
ISBN: 9780198517375
Category : Science
Languages : en
Pages : 377
Book Description
This is the first book devoted to the use of X-ray beam techniques to study magnetic properties of materials. It covers both experimental and theoretical issues. The three main topics are dichroism, elastic scattering (both non-resonant and resonant diffraction) and spectroscopy. In thepast decade there has been an expansion of activity in the field, driven by the availability of intense, tuneable and highly polarized X-ray beams from synchrtron facilities. The pace of events is likely to continue with the start of new (3rd generation) facilities, including the EuropeanSynchrotron Radiation Facility, Grenoble, and the Advanced Light Source, Argonne National Laboratory. USA.
Optical Effects in Solids
Author: David B. Tanner
Publisher: Cambridge University Press
ISBN: 1107160146
Category : Science
Languages : en
Pages : 413
Book Description
An overview of the optical effects in solids, this book addresses the physics of materials and their response to electromagnatic radiation--back cover.
Publisher: Cambridge University Press
ISBN: 1107160146
Category : Science
Languages : en
Pages : 413
Book Description
An overview of the optical effects in solids, this book addresses the physics of materials and their response to electromagnatic radiation--back cover.
Scientific and Technical Aerospace Reports
Author:
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 892
Book Description
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 892
Book Description
Grants and Awards for the Fiscal Year Ended ...
Author: National Science Foundation (U.S.)
Publisher:
ISBN:
Category : Federal aid to research
Languages : en
Pages : 262
Book Description
Publisher:
ISBN:
Category : Federal aid to research
Languages : en
Pages : 262
Book Description
Air Force Research Resumés
Author:
Publisher:
ISBN:
Category : Military research
Languages : en
Pages : 572
Book Description
Publisher:
ISBN:
Category : Military research
Languages : en
Pages : 572
Book Description
Semiconductor Physics
Author: Karl W. Böer
Publisher: Springer Nature
ISBN: 3031182863
Category : Technology & Engineering
Languages : en
Pages : 1408
Book Description
This handbook gives a complete and detailed survey of the field of semiconductor physics. It addresses every fundamental principle, the most important research topics and results, as well as conventional and emerging new areas of application. Additionally it provides all essential reference material on crystalline bulk, low-dimensional, and amorphous semiconductors, including valuable data on their optical, transport, and dynamic properties. This updated and extended second edition includes essential coverage of rapidly advancing areas in semiconductor physics, such as topological insulators, quantum optics, magnetic nanostructures and spintronic systems. Richly illustrated and authored by a duo of internationally acclaimed experts in solar energy and semiconductor physics, this handbook delivers in-depth treatment of the field, reflecting a combined experience spanning several decades as both researchers and educators. Offering a unique perspective on many issues, Semiconductor Physics is an invaluable reference for physicists, materials scientists and engineers throughout academia and industry.
Publisher: Springer Nature
ISBN: 3031182863
Category : Technology & Engineering
Languages : en
Pages : 1408
Book Description
This handbook gives a complete and detailed survey of the field of semiconductor physics. It addresses every fundamental principle, the most important research topics and results, as well as conventional and emerging new areas of application. Additionally it provides all essential reference material on crystalline bulk, low-dimensional, and amorphous semiconductors, including valuable data on their optical, transport, and dynamic properties. This updated and extended second edition includes essential coverage of rapidly advancing areas in semiconductor physics, such as topological insulators, quantum optics, magnetic nanostructures and spintronic systems. Richly illustrated and authored by a duo of internationally acclaimed experts in solar energy and semiconductor physics, this handbook delivers in-depth treatment of the field, reflecting a combined experience spanning several decades as both researchers and educators. Offering a unique perspective on many issues, Semiconductor Physics is an invaluable reference for physicists, materials scientists and engineers throughout academia and industry.