Author: Richard Bube
Publisher: Elsevier
ISBN: 0323146651
Category : Science
Languages : en
Pages : 541
Book Description
Electronic Properties of Crystalline Solids: An Introduction to Fundamentals discusses courses in the electronic properties of solids taught in the Department of Materials Science and Engineering at Stanford University. The book starts with a brief review of classical wave mechanics, discussing concept of waves and their role in the interactions of electrons, phonons, and photons. The book covers the free electron model for metals, and the origin, derivation, and properties of allowed and forbidden energy bands for electrons in crystalline materials. It also examines transport phenomena and optical effects in crystalline materials, including electrical conductivity, scattering phenomena, thermal conductivity, Hall and thermoelectric effects, magnetoresistance, optical absorption, photoconductivity, and other photoelectronic effects in both ideal and real materials. This book is intended for upper-level undergraduates in a science major, or for first- or second-year graduate students with an interest in the scientific basis for our understanding of properties of materials.
Electronic Properties of Crystalline Solids
Author: Richard Bube
Publisher: Elsevier
ISBN: 0323146651
Category : Science
Languages : en
Pages : 541
Book Description
Electronic Properties of Crystalline Solids: An Introduction to Fundamentals discusses courses in the electronic properties of solids taught in the Department of Materials Science and Engineering at Stanford University. The book starts with a brief review of classical wave mechanics, discussing concept of waves and their role in the interactions of electrons, phonons, and photons. The book covers the free electron model for metals, and the origin, derivation, and properties of allowed and forbidden energy bands for electrons in crystalline materials. It also examines transport phenomena and optical effects in crystalline materials, including electrical conductivity, scattering phenomena, thermal conductivity, Hall and thermoelectric effects, magnetoresistance, optical absorption, photoconductivity, and other photoelectronic effects in both ideal and real materials. This book is intended for upper-level undergraduates in a science major, or for first- or second-year graduate students with an interest in the scientific basis for our understanding of properties of materials.
Publisher: Elsevier
ISBN: 0323146651
Category : Science
Languages : en
Pages : 541
Book Description
Electronic Properties of Crystalline Solids: An Introduction to Fundamentals discusses courses in the electronic properties of solids taught in the Department of Materials Science and Engineering at Stanford University. The book starts with a brief review of classical wave mechanics, discussing concept of waves and their role in the interactions of electrons, phonons, and photons. The book covers the free electron model for metals, and the origin, derivation, and properties of allowed and forbidden energy bands for electrons in crystalline materials. It also examines transport phenomena and optical effects in crystalline materials, including electrical conductivity, scattering phenomena, thermal conductivity, Hall and thermoelectric effects, magnetoresistance, optical absorption, photoconductivity, and other photoelectronic effects in both ideal and real materials. This book is intended for upper-level undergraduates in a science major, or for first- or second-year graduate students with an interest in the scientific basis for our understanding of properties of materials.
Electronic Properties of Crystalline Solids
Author: Richard H. Bube
Publisher:
ISBN:
Category :
Languages : en
Pages : 524
Book Description
Publisher:
ISBN:
Category :
Languages : en
Pages : 524
Book Description
Electronic Properties of Materials
Author: Rolf E. Hummel
Publisher: Springer Science & Business Media
ISBN: 3662024241
Category : Technology & Engineering
Languages : en
Pages : 323
Book Description
The present book on electrical, optical, magnetic and thermal properties of materials is in many aspects different from other introductory texts in solid state physics. First of all, this book is written for engineers, particularly materials and electrical engineers who want to gain a fundamental under standing of semiconductor devices, magnetic materials, lasers, alloys, etc. Second, it stresses concepts rather than mathematical formalism, which should make the presentation relatively easy to understand. Thus, this book provides a thorough preparation for advanced texts, monographs, or special ized journal articles. Third, this book is not an encyclopedia. The selection oftopics is restricted to material which is considered to be essential and which can be covered in a 15-week semester course. For those professors who want to teach a two-semester course, supplemental topics can be found which deepen the understanding. (These sections are marked by an asterisk [*]. ) Fourth, the present text leaves the teaching of crystallography, X-ray diffrac tion, diffusion, lattice defects, etc. , to those courses which specialize in these subjects. As a rule, engineering students learn this material at the beginning of their upper division curriculum. The reader is, however, reminded of some of these topics whenever the need arises. Fifth, this book is distinctly divided into five self-contained parts which may be read independently.
Publisher: Springer Science & Business Media
ISBN: 3662024241
Category : Technology & Engineering
Languages : en
Pages : 323
Book Description
The present book on electrical, optical, magnetic and thermal properties of materials is in many aspects different from other introductory texts in solid state physics. First of all, this book is written for engineers, particularly materials and electrical engineers who want to gain a fundamental under standing of semiconductor devices, magnetic materials, lasers, alloys, etc. Second, it stresses concepts rather than mathematical formalism, which should make the presentation relatively easy to understand. Thus, this book provides a thorough preparation for advanced texts, monographs, or special ized journal articles. Third, this book is not an encyclopedia. The selection oftopics is restricted to material which is considered to be essential and which can be covered in a 15-week semester course. For those professors who want to teach a two-semester course, supplemental topics can be found which deepen the understanding. (These sections are marked by an asterisk [*]. ) Fourth, the present text leaves the teaching of crystallography, X-ray diffrac tion, diffusion, lattice defects, etc. , to those courses which specialize in these subjects. As a rule, engineering students learn this material at the beginning of their upper division curriculum. The reader is, however, reminded of some of these topics whenever the need arises. Fifth, this book is distinctly divided into five self-contained parts which may be read independently.
Electronic Properties of Materials
Author: Rolf E. Hummel
Publisher: Springer Science & Business Media
ISBN: 1441981640
Category : Technology & Engineering
Languages : en
Pages : 489
Book Description
This text on the electrical, optical, magnetic, and thermal properties of materials stresses concepts rather than mathematical formalism. Suitable for advanced undergraduates, it is intended for materials and electrical engineers who want to gain a fundamental understanding of alloys, semiconductor devices, lasers, magnetic materials, and so forth. The book is organized to be used in a one-semester course; to that end each section of applications, after the introduction to the fundamentals of electron theory, can be read independently of the others. Many examples from engineering practice serve to provide an understanding of common devices and methods. Among the modern applications covered are: high-temperature superconductors, optoelectronic materials, semiconductor device fabrication, xerography, magneto-optic memories, and amorphous ferromagnetics. The fourth edition has been revised and updated with an emphasis on the applications sections, which now cover devices of the next generation of electronics.
Publisher: Springer Science & Business Media
ISBN: 1441981640
Category : Technology & Engineering
Languages : en
Pages : 489
Book Description
This text on the electrical, optical, magnetic, and thermal properties of materials stresses concepts rather than mathematical formalism. Suitable for advanced undergraduates, it is intended for materials and electrical engineers who want to gain a fundamental understanding of alloys, semiconductor devices, lasers, magnetic materials, and so forth. The book is organized to be used in a one-semester course; to that end each section of applications, after the introduction to the fundamentals of electron theory, can be read independently of the others. Many examples from engineering practice serve to provide an understanding of common devices and methods. Among the modern applications covered are: high-temperature superconductors, optoelectronic materials, semiconductor device fabrication, xerography, magneto-optic memories, and amorphous ferromagnetics. The fourth edition has been revised and updated with an emphasis on the applications sections, which now cover devices of the next generation of electronics.
Electronic Processes in Non-Crystalline Materials
Author: Sir Nevill Francis Mott
Publisher: Oxford University Press
ISBN: 0199645337
Category : Science
Languages : en
Pages : 605
Book Description
A reissue of a classic Oxford text. The book sets out theoretical concepts and makes comparisons with experiments for a wide variety of phenomena in non-crystalline materials.
Publisher: Oxford University Press
ISBN: 0199645337
Category : Science
Languages : en
Pages : 605
Book Description
A reissue of a classic Oxford text. The book sets out theoretical concepts and makes comparisons with experiments for a wide variety of phenomena in non-crystalline materials.
Atomic and Electronic Structure of Solids
Author: Efthimios Kaxiras
Publisher: Cambridge University Press
ISBN: 0521810108
Category : Science
Languages : en
Pages : 700
Book Description
Graduate-level textbook for physicists, chemists and materials scientists.
Publisher: Cambridge University Press
ISBN: 0521810108
Category : Science
Languages : en
Pages : 700
Book Description
Graduate-level textbook for physicists, chemists and materials scientists.
Optical and Electrical Properties of Nanoscale Materials
Author: Alain Diebold
Publisher: Springer Nature
ISBN: 3030803236
Category : Technology & Engineering
Languages : en
Pages : 495
Book Description
This book covers the optical and electrical properties of nanoscale materials with an emphasis on how new and unique material properties result from the special nature of their electronic band structure. Beginning with a review of the optical and solid state physics needed for understanding optical and electrical properties, the book then introduces the electronic band structure of solids and discusses the effect of spin orbit coupling on the valence band, which is critical for understanding the optical properties of most nanoscale materials. Excitonic effects and excitons are also presented along with their effect on optical absorption. 2D materials, such as graphene and transition metal dichalcogenides, are host to unique electrical properties resulting from the electronic band structure. This book devotes significant attention to the optical and electrical properties of 2D and topological materials with an emphasis on optical measurements, electrical characterization of carrier transport, and a discussion of the electronic band structures using a tight binding approach. This book succinctly compiles useful fundamental and practical information from one of the fastest growing research topics in materials science and is thus an essential compendium for both students and researchers in this rapidly moving field.
Publisher: Springer Nature
ISBN: 3030803236
Category : Technology & Engineering
Languages : en
Pages : 495
Book Description
This book covers the optical and electrical properties of nanoscale materials with an emphasis on how new and unique material properties result from the special nature of their electronic band structure. Beginning with a review of the optical and solid state physics needed for understanding optical and electrical properties, the book then introduces the electronic band structure of solids and discusses the effect of spin orbit coupling on the valence band, which is critical for understanding the optical properties of most nanoscale materials. Excitonic effects and excitons are also presented along with their effect on optical absorption. 2D materials, such as graphene and transition metal dichalcogenides, are host to unique electrical properties resulting from the electronic band structure. This book devotes significant attention to the optical and electrical properties of 2D and topological materials with an emphasis on optical measurements, electrical characterization of carrier transport, and a discussion of the electronic band structures using a tight binding approach. This book succinctly compiles useful fundamental and practical information from one of the fastest growing research topics in materials science and is thus an essential compendium for both students and researchers in this rapidly moving field.
Progress in Electron Properties of Solids
Author: E. Doni
Publisher: Springer Science & Business Media
ISBN: 9400924194
Category : Science
Languages : en
Pages : 454
Book Description
This volume on the novelties in the electronic properties of solids appears in occasion of Franco Bassani sixtieth birthday, and is dedicated to honour a scientific activity which has contributed so much of the development of this very active area of research. It is re markable that this book can cover so large a part of the current research on electronic properties of solids by contributions from Bassani's former students, collaborators at different stages of his scientific life, and physicists from all over the world who have been in close scientific relationship with him. A personal flavour therefore accompanies a number of the papers of this volume, which are both up-to-date reports on present research and original recollections of the early events of modern solid state physics. The volume begins with a few contributions dealing with theoretical procedures for electronic energy levels, a primary step toward the interpretation of structural and optical properties of extended and confined systems. Other papers concern the interacting state of electrons with light (polaritons) and the effect of the coupling of electrons with lattice vibrations, with emphasis on the thermal behaviour of the electron levels and on such experimental procedures as piezospectroscopy. Electron-lattice interaction in external magnetic field and transport-related properties due to high light excitation are also con sidered. The impact of synchroton radiation on condensed matter spectroscopy is dis cussed in a topical contribution, and optical measurements are presented for extended and impurity levels.
Publisher: Springer Science & Business Media
ISBN: 9400924194
Category : Science
Languages : en
Pages : 454
Book Description
This volume on the novelties in the electronic properties of solids appears in occasion of Franco Bassani sixtieth birthday, and is dedicated to honour a scientific activity which has contributed so much of the development of this very active area of research. It is re markable that this book can cover so large a part of the current research on electronic properties of solids by contributions from Bassani's former students, collaborators at different stages of his scientific life, and physicists from all over the world who have been in close scientific relationship with him. A personal flavour therefore accompanies a number of the papers of this volume, which are both up-to-date reports on present research and original recollections of the early events of modern solid state physics. The volume begins with a few contributions dealing with theoretical procedures for electronic energy levels, a primary step toward the interpretation of structural and optical properties of extended and confined systems. Other papers concern the interacting state of electrons with light (polaritons) and the effect of the coupling of electrons with lattice vibrations, with emphasis on the thermal behaviour of the electron levels and on such experimental procedures as piezospectroscopy. Electron-lattice interaction in external magnetic field and transport-related properties due to high light excitation are also con sidered. The impact of synchroton radiation on condensed matter spectroscopy is dis cussed in a topical contribution, and optical measurements are presented for extended and impurity levels.
Electronic Properties of Doped Semiconductors
Author: B.I. Shklovskii
Publisher: Springer Science & Business Media
ISBN: 3662024039
Category : Science
Languages : en
Pages : 400
Book Description
First-generation semiconductors could not be properly termed "doped- they were simply very impure. Uncontrolled impurities hindered the discovery of physical laws, baffling researchers and evoking pessimism and derision in advocates of the burgeoning "pure" physical disciplines. The eventual banish ment of the "dirt" heralded a new era in semiconductor physics, an era that had "purity" as its motto. It was this era that yielded the successes of the 1950s and brought about a new technology of "semiconductor electronics". Experiments with pure crystals provided a powerful stimulus to the develop ment of semiconductor theory. New methods and theories were developed and tested: the effective-mass method for complex bands, the theory of impurity states, and the theory of kinetic phenomena. These developments constitute what is now known as semiconductor phys ics. In the last fifteen years, however, there has been a noticeable shift towards impure semiconductors - a shift which came about because it is precisely the impurities that are essential to a number of major semiconductor devices. Technology needs impure semiconductors, which unlike the first-generation items, are termed "doped" rather than "impure" to indicate that the impurity levels can now be controlled to a certain extent.
Publisher: Springer Science & Business Media
ISBN: 3662024039
Category : Science
Languages : en
Pages : 400
Book Description
First-generation semiconductors could not be properly termed "doped- they were simply very impure. Uncontrolled impurities hindered the discovery of physical laws, baffling researchers and evoking pessimism and derision in advocates of the burgeoning "pure" physical disciplines. The eventual banish ment of the "dirt" heralded a new era in semiconductor physics, an era that had "purity" as its motto. It was this era that yielded the successes of the 1950s and brought about a new technology of "semiconductor electronics". Experiments with pure crystals provided a powerful stimulus to the develop ment of semiconductor theory. New methods and theories were developed and tested: the effective-mass method for complex bands, the theory of impurity states, and the theory of kinetic phenomena. These developments constitute what is now known as semiconductor phys ics. In the last fifteen years, however, there has been a noticeable shift towards impure semiconductors - a shift which came about because it is precisely the impurities that are essential to a number of major semiconductor devices. Technology needs impure semiconductors, which unlike the first-generation items, are termed "doped" rather than "impure" to indicate that the impurity levels can now be controlled to a certain extent.
Optical Properties of Crystalline and Amorphous Semiconductors
Author: Sadao Adachi
Publisher: Springer Science & Business Media
ISBN: 1461552419
Category : Technology & Engineering
Languages : en
Pages : 272
Book Description
Optical Properties of Crystalline and Amorphous Semiconductors: Materials and Fundamental Principles presents an introduction to the fundamental optical properties of semiconductors. This book presents tutorial articles in the categories of materials and fundamental principles (Chapter 1), optical properties in the reststrahlen region (Chapter 2), those in the interband transition region (Chapters 3 and 4) and at or below the fundamental absorption edge (Chapter 5). Optical Properties of Crystalline and Amorphous Semiconductors: Materials and Fundamental Principles is presented in a form which could serve to teach the underlying concepts of semiconductor optical properties and their implementation. This book is an invaluable resource for device engineers, solid-state physicists, material scientists and students specializing in the fields of semiconductor physics and device engineering.
Publisher: Springer Science & Business Media
ISBN: 1461552419
Category : Technology & Engineering
Languages : en
Pages : 272
Book Description
Optical Properties of Crystalline and Amorphous Semiconductors: Materials and Fundamental Principles presents an introduction to the fundamental optical properties of semiconductors. This book presents tutorial articles in the categories of materials and fundamental principles (Chapter 1), optical properties in the reststrahlen region (Chapter 2), those in the interband transition region (Chapters 3 and 4) and at or below the fundamental absorption edge (Chapter 5). Optical Properties of Crystalline and Amorphous Semiconductors: Materials and Fundamental Principles is presented in a form which could serve to teach the underlying concepts of semiconductor optical properties and their implementation. This book is an invaluable resource for device engineers, solid-state physicists, material scientists and students specializing in the fields of semiconductor physics and device engineering.