Electronic Band Structure Engineering and Ultrafast Dynamics of Dirac Semimetals

Electronic Band Structure Engineering and Ultrafast Dynamics of Dirac Semimetals PDF Author: Changhua Bao
Publisher: Springer Nature
ISBN: 9819953251
Category :
Languages : en
Pages : 91

Get Book Here

Book Description

Electronic Band Structure Engineering and Ultrafast Dynamics of Dirac Semimetals

Electronic Band Structure Engineering and Ultrafast Dynamics of Dirac Semimetals PDF Author: Changhua Bao
Publisher: Springer Nature
ISBN: 9819953251
Category :
Languages : en
Pages : 91

Get Book Here

Book Description


Electronic Band Structure Engineering and Ultrafast Dynamics of Dirac Semimetals

Electronic Band Structure Engineering and Ultrafast Dynamics of Dirac Semimetals PDF Author: 鲍昌华
Publisher:
ISBN: 9787302639060
Category : Condensed matter
Languages : en
Pages : 0

Get Book Here

Book Description


Band Structure Engineering in Semiconductor Microstructures

Band Structure Engineering in Semiconductor Microstructures PDF Author: R.A. Abram
Publisher: Springer Science & Business Media
ISBN: 1475707703
Category : Science
Languages : en
Pages : 383

Get Book Here

Book Description
This volume contains the proceedings of the NATO Advanced Research Workshop on Band Structure Engineering in Semiconductor Microstructures held at Il Ciocco, Castelvecchio Pascali in Tuscany between 10th and 15th April 1988. Research on semiconductor microstructures has expanded rapidly in recent years as a result of developments in the semiconductor growth and device fabrication technologies. The emergence of new semiconductor structures has facilitated a number of approaches to producing systems with certain features in their electronic structure which can lead to useful or interesting properties. The interest in band structure engineering has stimd ated a variety of physical investigations and nove 1 device concepts and the field now exhibits a fascinating interplay betwepn pure physics and device technology. Devices based on microstruc tures are useful vehicles for fundamental studies but also new device ideas require a thorough understanding of the basic physics. Around forty researchers gathered at I1 Ciocco in the Spring of 1988 to discuss band structure engineering in semiconductor microstructures.

Electronic Properties Of Dirac And Weyl Semimetals

Electronic Properties Of Dirac And Weyl Semimetals PDF Author: Eduard V Gorbar
Publisher: World Scientific
ISBN: 9811207364
Category : Science
Languages : en
Pages : 535

Get Book Here

Book Description
The monograph reviews various aspects of electronic properties of Dirac and Weyl semimetals. After a brief discussion of 2D Dirac semimetals, a comprehensive review of 3D materials is given. The description starts from an overview of the topological properties and symmetries of Dirac and Weyl semimetals. In addition, several low-energy models of Dirac and Weyl quasiparticles are presented. The key ab initio approaches and material realizations are given. The monograph includes detailed discussions of the surface Fermi arcs, anomalous transport properties, and collective modes of Dirac and Weyl semimetals. Superconductivity in these materials is briefly addressed.

Dirac and Weyl Semimetals for Novel Device Applications

Dirac and Weyl Semimetals for Novel Device Applications PDF Author: Niraj Bhattarai
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description
Much fundamental research in condensed matter physics has been driven by the tremendous influence of high-energy physics. In 1928, Paul Dirac laid a strong foundation in the unification of quantum mechanics and relativistic physics in explaining the nature of the electron. The key idea of Dirac's equation was to describe relativistic particles like Dirac and Weyl fermions in high-energy physics. After the discovery of topological insulators (ordinary insulators in the bulk state but allowing charge to flow on their surfaces) in the early 1980s, the search for new topological semimetals such as Dirac and Weyl mushroomed over the recent decades in condensed matter physics. Dirac and Weyl semimetals host Dirac and Weyl fermions respectively in the form of low-energy excitations and are characterized by band-touching points with linear dispersion similar to massless relativistic particles predicted in high-energy physics.The smallest feature size of current silicon-based advanced microelectronic devices is around 4 nm and the rate of development of current microelectronics has slowed down as silicon appears to have reached its physical limit. Industries are looking for alternatives to silicon-based technology. The discovery of Dirac and Weyl semimetals paves the way for developing new forms of microelectronics. These materials offer nearly dissipationless current and that could dramatically speed up the performance and efficiency of modern electronic devices. Weyl semimetals are also known for exhibiting exotic low energy physics such as Fermi arcs on the surface, distinct magneto-transport properties, and chiral anomaly-induced quantum transport. Such exotic properties of Weyl semimetals are useful for making new types of electronic devices such as broadband photodetectors, light-emitting diodes, biosensors, and superfast quantum computers capable of parsing multi-state superposition. While the promise of Dirac and Weyl semimetal is clear, the practical integration of such systems into everyday devices depends on a thorough understanding of the materials at the nanoscale. In my dissertation research, I have grown nanofilms of three different systems - LaAlGe, MoTe2, and FeSn, of which the former two are examples of Weyl semimetal and later is a Dirac semimetal. For the first time, high-quality thin films for LaAlGe and FeSn have been grown using the ultra-high vacuum molecular beam epitaxy method. I have shown that these systems can be grown on silicon substrates, which can be directly used for multifunctional device applications. I have systematically investigated the electrical transport and magneto-transport properties of these systems to understand the underlying physics, especially non-saturating magnetoresistance due to perfect electron and hole carrier balance up to a very high magnetic field. Not only are these new systems extremely important for our understanding of fundamental quantum phenomena, but also, they exhibit completely different transport phenomena from ordinary materials. Dirac semimetals also exhibit non-saturating extremely large magnetoresistance as a consequence of their robust electronic bands being protected by time-reversal symmetry. These open undeniably new possibilities for materials engineering and applications including quantum computing.

Electronic Structures in Solids

Electronic Structures in Solids PDF Author: E. D. Haidemenakis
Publisher:
ISBN:
Category : Electronic structure
Languages : en
Pages : 488

Get Book Here

Book Description


Probing the Electronic Structure of New 3D Dirac Semimetals

Probing the Electronic Structure of New 3D Dirac Semimetals PDF Author: Andreas Topp
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description


Electronic structure and optical properties of semiconductors

Electronic structure and optical properties of semiconductors PDF Author: Marvin L. Cohen
Publisher: Springer
ISBN: 9783540513919
Category : Science
Languages : en
Pages : 264

Get Book Here

Book Description


Emergent States in Photoinduced Charge-Density-Wave Transitions

Emergent States in Photoinduced Charge-Density-Wave Transitions PDF Author: Alfred Zong
Publisher: Springer Nature
ISBN: 3030817512
Category : Science
Languages : en
Pages : 234

Get Book Here

Book Description
This book advances understanding of light-induced phase transitions and nonequilibrium orders that occur in a broken-symmetry system. Upon excitation with an intense laser pulse, materials can undergo a nonthermal transition through pathways different from those in equilibrium. The mechanism underlying these photoinduced phase transitions has long been researched, but many details in this ultrafast, non-adiabatic regime still remain to be clarified. The work in this book reveals new insights into this phenomena via investigation of photoinduced melting and recovery of charge density waves (CDWs). Using several time-resolved diffraction and spectroscopic techniques, the author shows that the light-induced melting of a CDW is characterized by dynamical slowing-down, while the restoration of the symmetry-breaking order features two distinct timescales: A fast recovery of the CDW amplitude is followed by a slower re-establishment of phase coherence, the latter of which is dictated by the presence of topological defects in the CDW. Furthermore, after the suppression of the original CDW by photoexcitation, a different, competing CDW transiently emerges, illustrating how a hidden order in equilibrium can be unleashed by a laser pulse. These insights into CDW systems may be carried over to other broken-symmetry states, such as superconductivity and magnetic ordering, bringing us one step closer towards manipulating phases of matter using a laser pulse.

Photoelectron Spectroscopy

Photoelectron Spectroscopy PDF Author: Stefan Hüfner
Publisher: Springer Science & Business Media
ISBN: 3662031507
Category : Science
Languages : en
Pages : 525

Get Book Here

Book Description
An up-to-date introduction to the field, treating in depth the electronic structures of atoms, molecules, solids and surfaces, together with brief descriptions of inverse photoemission, spin-polarized photoemission and photoelectron diffraction. Experimental aspects are considered throughout and the results carefully interpreted by theory. A wealth of measured data is presented in tabullar for easy use by experimentalists.