Author: Thierry Ouisse
Publisher: John Wiley & Sons
ISBN: 111862338X
Category : Technology & Engineering
Languages : en
Pages : 282
Book Description
This book introduces researchers and students to the physical principles which govern the operation of solid-state devices whose overall length is smaller than the electron mean free path. In quantum systems such as these, electron wave behavior prevails, and transport properties must be assessed by calculating transmission amplitudes rather than microscopic conductivity. Emphasis is placed on detailing the physical laws that apply under these circumstances, and on giving a clear account of the most important phenomena. The coverage is comprehensive, with mathematics and theoretical material systematically kept at the most accessible level. The various physical effects are clearly differentiated, ranging from transmission formalism to the Coulomb blockade effect and current noise fluctuations. Practical exercises and solutions have also been included to facilitate the reader's understanding.
Electron Transport in Nanostructures and Mesoscopic Devices
Author: Thierry Ouisse
Publisher: John Wiley & Sons
ISBN: 111862338X
Category : Technology & Engineering
Languages : en
Pages : 282
Book Description
This book introduces researchers and students to the physical principles which govern the operation of solid-state devices whose overall length is smaller than the electron mean free path. In quantum systems such as these, electron wave behavior prevails, and transport properties must be assessed by calculating transmission amplitudes rather than microscopic conductivity. Emphasis is placed on detailing the physical laws that apply under these circumstances, and on giving a clear account of the most important phenomena. The coverage is comprehensive, with mathematics and theoretical material systematically kept at the most accessible level. The various physical effects are clearly differentiated, ranging from transmission formalism to the Coulomb blockade effect and current noise fluctuations. Practical exercises and solutions have also been included to facilitate the reader's understanding.
Publisher: John Wiley & Sons
ISBN: 111862338X
Category : Technology & Engineering
Languages : en
Pages : 282
Book Description
This book introduces researchers and students to the physical principles which govern the operation of solid-state devices whose overall length is smaller than the electron mean free path. In quantum systems such as these, electron wave behavior prevails, and transport properties must be assessed by calculating transmission amplitudes rather than microscopic conductivity. Emphasis is placed on detailing the physical laws that apply under these circumstances, and on giving a clear account of the most important phenomena. The coverage is comprehensive, with mathematics and theoretical material systematically kept at the most accessible level. The various physical effects are clearly differentiated, ranging from transmission formalism to the Coulomb blockade effect and current noise fluctuations. Practical exercises and solutions have also been included to facilitate the reader's understanding.
Transport in Nanostructures
Author: David K. Ferry
Publisher: Cambridge University Press
ISBN: 0521877482
Category : Science
Languages : en
Pages : 671
Book Description
The advent of semiconductor structures whose characteristic dimensions are smaller than the mean free path of carriers has led to the development of novel devices, and advances in theoretical understanding of mesoscopic systems or nanostructures. This book has been thoroughly revised and provides a much-needed update on the very latest experimental research into mesoscopic devices and develops a detailed theoretical framework for understanding their behaviour. Beginning with the key observable phenomena in nanostructures, the authors describe quantum confined systems, transmission in nanostructures, quantum dots, and single electron phenomena. Separate chapters are devoted to interference in diffusive transport, temperature decay of fluctuations, and non-equilibrium transport and nanodevices. Throughout the book, the authors interweave experimental results with the appropriate theoretical formalism. The book will be of great interest to graduate students taking courses in mesoscopic physics or nanoelectronics, and researchers working on semiconductor nanostructures.
Publisher: Cambridge University Press
ISBN: 0521877482
Category : Science
Languages : en
Pages : 671
Book Description
The advent of semiconductor structures whose characteristic dimensions are smaller than the mean free path of carriers has led to the development of novel devices, and advances in theoretical understanding of mesoscopic systems or nanostructures. This book has been thoroughly revised and provides a much-needed update on the very latest experimental research into mesoscopic devices and develops a detailed theoretical framework for understanding their behaviour. Beginning with the key observable phenomena in nanostructures, the authors describe quantum confined systems, transmission in nanostructures, quantum dots, and single electron phenomena. Separate chapters are devoted to interference in diffusive transport, temperature decay of fluctuations, and non-equilibrium transport and nanodevices. Throughout the book, the authors interweave experimental results with the appropriate theoretical formalism. The book will be of great interest to graduate students taking courses in mesoscopic physics or nanoelectronics, and researchers working on semiconductor nanostructures.
Electronic Transport in Mesoscopic Systems
Author: Supriyo Datta
Publisher: Cambridge University Press
ISBN: 1139643010
Category : Science
Languages : en
Pages : 398
Book Description
Advances in semiconductor technology have made possible the fabrication of structures whose dimensions are much smaller than the mean free path of an electron. This book gives a thorough account of the theory of electronic transport in such mesoscopic systems. After an initial chapter covering fundamental concepts, the transmission function formalism is presented, and used to describe three key topics in mesoscopic physics: the quantum Hall effect; localisation; and double-barrier tunnelling. Other sections include a discussion of optical analogies to mesoscopic phenomena, and the book concludes with a description of the non-equilibrium Green's function formalism and its relation to the transmission formalism. Complete with problems and solutions, the book will be of great interest to graduate students of mesoscopic physics and nanoelectronic device engineering, as well as to established researchers in these fields.
Publisher: Cambridge University Press
ISBN: 1139643010
Category : Science
Languages : en
Pages : 398
Book Description
Advances in semiconductor technology have made possible the fabrication of structures whose dimensions are much smaller than the mean free path of an electron. This book gives a thorough account of the theory of electronic transport in such mesoscopic systems. After an initial chapter covering fundamental concepts, the transmission function formalism is presented, and used to describe three key topics in mesoscopic physics: the quantum Hall effect; localisation; and double-barrier tunnelling. Other sections include a discussion of optical analogies to mesoscopic phenomena, and the book concludes with a description of the non-equilibrium Green's function formalism and its relation to the transmission formalism. Complete with problems and solutions, the book will be of great interest to graduate students of mesoscopic physics and nanoelectronic device engineering, as well as to established researchers in these fields.
Mesoscopic Electronics in Solid State Nanostructures
Author: Thomas Heinzel
Publisher: John Wiley & Sons
ISBN: 3527618929
Category : Science
Languages : en
Pages : 412
Book Description
This text treats electronic transport in the regime where conventional textbook models are no longer applicable, including the effect of electronic phase coherence, energy quantization and single-electron charging. This second edition is completely updated and expanded, and now comprises new chapters on spin electronics and quantum information processing, transport in inhomogeneous magnetic fields, organic/molecular electronics, and applications of field effect transistors. The book also provides an overview of semiconductor processing technologies and experimental techniques. With a number of examples and problems with solutions, this is an ideal introduction for students and beginning researchers in the field. "This book is a useful tool, too, for the experienced researcher to get a summary of recent developments in solid state nanostructures. I applaud the author for a marvellous contribution to the scientific community of mesoscopic electronics." Prof. K. Ensslin, Solid State Physics Laboratory, ETH Zurich
Publisher: John Wiley & Sons
ISBN: 3527618929
Category : Science
Languages : en
Pages : 412
Book Description
This text treats electronic transport in the regime where conventional textbook models are no longer applicable, including the effect of electronic phase coherence, energy quantization and single-electron charging. This second edition is completely updated and expanded, and now comprises new chapters on spin electronics and quantum information processing, transport in inhomogeneous magnetic fields, organic/molecular electronics, and applications of field effect transistors. The book also provides an overview of semiconductor processing technologies and experimental techniques. With a number of examples and problems with solutions, this is an ideal introduction for students and beginning researchers in the field. "This book is a useful tool, too, for the experienced researcher to get a summary of recent developments in solid state nanostructures. I applaud the author for a marvellous contribution to the scientific community of mesoscopic electronics." Prof. K. Ensslin, Solid State Physics Laboratory, ETH Zurich
Electronic Quantum Transport in Mesoscopic Semiconductor Structures
Author: Thomas Ihn
Publisher: Springer
ISBN: 0387218289
Category : Science
Languages : en
Pages : 270
Book Description
Opening with a brief historical account of electron transport from Ohm's law through transport in semiconductor nanostructures, this book discusses topics related to electronic quantum transport. The book is written for graduate students and researchers in the field of mesoscopic semiconductors or in semiconductor nanostructures. Highlights include review of the cryogenic scanning probe techniques applied to semiconductor nanostructures.
Publisher: Springer
ISBN: 0387218289
Category : Science
Languages : en
Pages : 270
Book Description
Opening with a brief historical account of electron transport from Ohm's law through transport in semiconductor nanostructures, this book discusses topics related to electronic quantum transport. The book is written for graduate students and researchers in the field of mesoscopic semiconductors or in semiconductor nanostructures. Highlights include review of the cryogenic scanning probe techniques applied to semiconductor nanostructures.
Transport in Semiconductor Mesoscopic Devices
Author: David K. Ferry
Publisher: IOP Publishing Limited
ISBN: 9780750311021
Category : Science
Languages : en
Pages : 0
Book Description
Annotation David K. Ferry introduces the physics and applications of transport in mesoscopic and nanoscale electronic systems and devices and expands on the behaviour of these novel devices the numerous effects not seen in bulk semiconductors. Including coverage of recent developments, and with a chapter on carbon-based nanoelectronics, this work will provide a good course text for advanced students or as a handy reference for researchers or those entering this interdisciplinary area.
Publisher: IOP Publishing Limited
ISBN: 9780750311021
Category : Science
Languages : en
Pages : 0
Book Description
Annotation David K. Ferry introduces the physics and applications of transport in mesoscopic and nanoscale electronic systems and devices and expands on the behaviour of these novel devices the numerous effects not seen in bulk semiconductors. Including coverage of recent developments, and with a chapter on carbon-based nanoelectronics, this work will provide a good course text for advanced students or as a handy reference for researchers or those entering this interdisciplinary area.
Theory of Electron Transport in Semiconductors
Author: Carlo Jacoboni
Publisher: Springer Science & Business Media
ISBN: 3642105866
Category : Science
Languages : en
Pages : 590
Book Description
This book originated out of a desire to provide students with an instrument which might lead them from knowledge of elementary classical and quantum physics to moderntheoreticaltechniques for the analysisof electrontransport in semiconductors. The book is basically a textbook for students of physics, material science, and electronics. Rather than a monograph on detailed advanced research in a speci?c area, it intends to introduce the reader to the fascinating ?eld of electron dynamics in semiconductors, a ?eld that, through its applications to electronics, greatly contributed to the transformationof all our lives in the second half of the twentieth century, and continues to provide surprises and new challenges. The ?eld is so extensive that it has been necessary to leave aside many subjects, while others could be dealt with only in terms of their basic principles. The book is divided into ?ve major parts. Part I moves from a survey of the fundamentals of classical and quantum physics to a brief review of basic semiconductor physics. Its purpose is to establish a common platform of language and symbols, and to make the entire treatment, as far as pos- ble, self-contained. Parts II and III, respectively, develop transport theory in bulk semiconductors in semiclassical and quantum frames. Part IV is devoted to semiconductor structures, including devices and mesoscopic coherent s- tems. Finally, Part V develops the basic theoretical tools of transport theory within the modern nonequilibrium Green-function formulation, starting from an introduction to second-quantization formalism.
Publisher: Springer Science & Business Media
ISBN: 3642105866
Category : Science
Languages : en
Pages : 590
Book Description
This book originated out of a desire to provide students with an instrument which might lead them from knowledge of elementary classical and quantum physics to moderntheoreticaltechniques for the analysisof electrontransport in semiconductors. The book is basically a textbook for students of physics, material science, and electronics. Rather than a monograph on detailed advanced research in a speci?c area, it intends to introduce the reader to the fascinating ?eld of electron dynamics in semiconductors, a ?eld that, through its applications to electronics, greatly contributed to the transformationof all our lives in the second half of the twentieth century, and continues to provide surprises and new challenges. The ?eld is so extensive that it has been necessary to leave aside many subjects, while others could be dealt with only in terms of their basic principles. The book is divided into ?ve major parts. Part I moves from a survey of the fundamentals of classical and quantum physics to a brief review of basic semiconductor physics. Its purpose is to establish a common platform of language and symbols, and to make the entire treatment, as far as pos- ble, self-contained. Parts II and III, respectively, develop transport theory in bulk semiconductors in semiclassical and quantum frames. Part IV is devoted to semiconductor structures, including devices and mesoscopic coherent s- tems. Finally, Part V develops the basic theoretical tools of transport theory within the modern nonequilibrium Green-function formulation, starting from an introduction to second-quantization formalism.
Transport in Nanostructures
Author: David Ferry
Publisher: Cambridge University Press
ISBN: 9780521663656
Category : Science
Languages : en
Pages : 532
Book Description
A comprehensive, detailed description of the properties and behaviour of mesoscopic devices.
Publisher: Cambridge University Press
ISBN: 9780521663656
Category : Science
Languages : en
Pages : 532
Book Description
A comprehensive, detailed description of the properties and behaviour of mesoscopic devices.
Semiconductor Nanostructures
Author: Thomas Ihn
Publisher: Oxford University Press
ISBN: 019953442X
Category : Language Arts & Disciplines
Languages : en
Pages : 569
Book Description
This introduction to the physics of semiconductor nanostructures and their transport properties emphasizes five fundamental transport phenomena: quantized conductance, tunnelling transport, the Aharonov-Bohm effect, the quantum Hall effect and the Coulomb blockade effect.
Publisher: Oxford University Press
ISBN: 019953442X
Category : Language Arts & Disciplines
Languages : en
Pages : 569
Book Description
This introduction to the physics of semiconductor nanostructures and their transport properties emphasizes five fundamental transport phenomena: quantized conductance, tunnelling transport, the Aharonov-Bohm effect, the quantum Hall effect and the Coulomb blockade effect.
Theory of Transport Properties of Semiconductor Nanostructures
Author: Eckehard Schöll
Publisher: Springer Science & Business Media
ISBN: 1461558077
Category : Technology & Engineering
Languages : en
Pages : 394
Book Description
Recent advances in the fabrication of semiconductors have created almost un limited possibilities to design structures on a nanometre scale with extraordinary electronic and optoelectronic properties. The theoretical understanding of elec trical transport in such nanostructures is of utmost importance for future device applications. This represents a challenging issue of today's basic research since it requires advanced theoretical techniques to cope with the quantum limit of charge transport, ultrafast carrier dynamics and strongly nonlinear high-field ef fects. This book, which appears in the electronic materials series, presents an over view of the theoretical background and recent developments in the theory of electrical transport in semiconductor nanostructures. It contains 11 chapters which are written by experts in their fields. Starting with a tutorial introduction to the subject in Chapter 1, it proceeds to present different approaches to transport theory. The semiclassical Boltzmann transport equation is in the centre of the next three chapters. Hydrodynamic moment equations (Chapter 2), Monte Carlo techniques (Chapter 3) and the cellular au tomaton approach (Chapter 4) are introduced and illustrated with applications to nanometre structures and device simulation. A full quantum-transport theory covering the Kubo formalism and nonequilibrium Green's functions (Chapter 5) as well as the density matrix theory (Chapter 6) is then presented.
Publisher: Springer Science & Business Media
ISBN: 1461558077
Category : Technology & Engineering
Languages : en
Pages : 394
Book Description
Recent advances in the fabrication of semiconductors have created almost un limited possibilities to design structures on a nanometre scale with extraordinary electronic and optoelectronic properties. The theoretical understanding of elec trical transport in such nanostructures is of utmost importance for future device applications. This represents a challenging issue of today's basic research since it requires advanced theoretical techniques to cope with the quantum limit of charge transport, ultrafast carrier dynamics and strongly nonlinear high-field ef fects. This book, which appears in the electronic materials series, presents an over view of the theoretical background and recent developments in the theory of electrical transport in semiconductor nanostructures. It contains 11 chapters which are written by experts in their fields. Starting with a tutorial introduction to the subject in Chapter 1, it proceeds to present different approaches to transport theory. The semiclassical Boltzmann transport equation is in the centre of the next three chapters. Hydrodynamic moment equations (Chapter 2), Monte Carlo techniques (Chapter 3) and the cellular au tomaton approach (Chapter 4) are introduced and illustrated with applications to nanometre structures and device simulation. A full quantum-transport theory covering the Kubo formalism and nonequilibrium Green's functions (Chapter 5) as well as the density matrix theory (Chapter 6) is then presented.