Author: Adam J. Schwartz
Publisher: Springer Science & Business Media
ISBN: 1475732058
Category : Technology & Engineering
Languages : en
Pages : 352
Book Description
Crystallographic texture or preferred orientation has long been known to strongly influence material properties. Historically, the means of obtaining such texture data has been though the use of x-ray or neutron diffraction for bulk texture measurements, or transmission electron microscopy or electron channeling for local crystallographic information. In recent years, we have seen the emergence of a new characterization technique for probing the microtexture of materials. This advance has come about primarily through the automated indexing of electron backscatter diffraction (EBSD) patterns. The first commercially available system was introduced in 1994, and since then of sales worldwide has been dramatic. This has accompanied widening the growth applicability in materials scienceproblems such as microtexture, phase identification, grain boundary character distribution, deformation microstructures, etc. and is evidence that this technique can, in some cases, replace more time-consuming transmission electron microscope (TEM) or x-ray diffraction investigations. The benefits lie in the fact that the spatial resolution on new field emission scanning electron microscopes (SEM) can approach 50 nm, but spatial extent can be as large a centimeter or greater with a computer controlled stage and montagingofthe images. Additional benefits include the relative ease and low costofattaching EBSD hardware to new or existing SEMs. Electron backscatter diffraction is also known as backscatter Kikuchi diffraction (BKD), or electron backscatter pattern technique (EBSP). Commercial names for the automation include Orientation Imaging Microscopy (OIMTM) and Automated Crystal Orientation Mapping (ACOM).
Electron Backscatter Diffraction in Materials Science
Author: Adam J. Schwartz
Publisher: Springer Science & Business Media
ISBN: 1475732058
Category : Technology & Engineering
Languages : en
Pages : 352
Book Description
Crystallographic texture or preferred orientation has long been known to strongly influence material properties. Historically, the means of obtaining such texture data has been though the use of x-ray or neutron diffraction for bulk texture measurements, or transmission electron microscopy or electron channeling for local crystallographic information. In recent years, we have seen the emergence of a new characterization technique for probing the microtexture of materials. This advance has come about primarily through the automated indexing of electron backscatter diffraction (EBSD) patterns. The first commercially available system was introduced in 1994, and since then of sales worldwide has been dramatic. This has accompanied widening the growth applicability in materials scienceproblems such as microtexture, phase identification, grain boundary character distribution, deformation microstructures, etc. and is evidence that this technique can, in some cases, replace more time-consuming transmission electron microscope (TEM) or x-ray diffraction investigations. The benefits lie in the fact that the spatial resolution on new field emission scanning electron microscopes (SEM) can approach 50 nm, but spatial extent can be as large a centimeter or greater with a computer controlled stage and montagingofthe images. Additional benefits include the relative ease and low costofattaching EBSD hardware to new or existing SEMs. Electron backscatter diffraction is also known as backscatter Kikuchi diffraction (BKD), or electron backscatter pattern technique (EBSP). Commercial names for the automation include Orientation Imaging Microscopy (OIMTM) and Automated Crystal Orientation Mapping (ACOM).
Publisher: Springer Science & Business Media
ISBN: 1475732058
Category : Technology & Engineering
Languages : en
Pages : 352
Book Description
Crystallographic texture or preferred orientation has long been known to strongly influence material properties. Historically, the means of obtaining such texture data has been though the use of x-ray or neutron diffraction for bulk texture measurements, or transmission electron microscopy or electron channeling for local crystallographic information. In recent years, we have seen the emergence of a new characterization technique for probing the microtexture of materials. This advance has come about primarily through the automated indexing of electron backscatter diffraction (EBSD) patterns. The first commercially available system was introduced in 1994, and since then of sales worldwide has been dramatic. This has accompanied widening the growth applicability in materials scienceproblems such as microtexture, phase identification, grain boundary character distribution, deformation microstructures, etc. and is evidence that this technique can, in some cases, replace more time-consuming transmission electron microscope (TEM) or x-ray diffraction investigations. The benefits lie in the fact that the spatial resolution on new field emission scanning electron microscopes (SEM) can approach 50 nm, but spatial extent can be as large a centimeter or greater with a computer controlled stage and montagingofthe images. Additional benefits include the relative ease and low costofattaching EBSD hardware to new or existing SEMs. Electron backscatter diffraction is also known as backscatter Kikuchi diffraction (BKD), or electron backscatter pattern technique (EBSP). Commercial names for the automation include Orientation Imaging Microscopy (OIMTM) and Automated Crystal Orientation Mapping (ACOM).
Introduction to Texture Analysis
Author: Olaf Engler
Publisher: CRC Press
ISBN: 1420063669
Category : Science
Languages : en
Pages : 490
Book Description
The first edition of Introduction to Texture Analysis: Macrotexture, Microtexture, and Orientation Mapping broke new ground by collating seventy years worth of research in a convenient single-source format. Reflecting emerging methods and the evolution of the field, the second edition continues to provide comprehensive coverage of the concepts, pra
Publisher: CRC Press
ISBN: 1420063669
Category : Science
Languages : en
Pages : 490
Book Description
The first edition of Introduction to Texture Analysis: Macrotexture, Microtexture, and Orientation Mapping broke new ground by collating seventy years worth of research in a convenient single-source format. Reflecting emerging methods and the evolution of the field, the second edition continues to provide comprehensive coverage of the concepts, pra
Scanning Microscopy for Nanotechnology
Author: Weilie Zhou
Publisher: Springer Science & Business Media
ISBN: 0387396209
Category : Technology & Engineering
Languages : en
Pages : 533
Book Description
This book presents scanning electron microscopy (SEM) fundamentals and applications for nanotechnology. It includes integrated fabrication techniques using the SEM, such as e-beam and FIB, and it covers in-situ nanomanipulation of materials. The book is written by international experts from the top nano-research groups that specialize in nanomaterials characterization. The book will appeal to nanomaterials researchers, and to SEM development specialists.
Publisher: Springer Science & Business Media
ISBN: 0387396209
Category : Technology & Engineering
Languages : en
Pages : 533
Book Description
This book presents scanning electron microscopy (SEM) fundamentals and applications for nanotechnology. It includes integrated fabrication techniques using the SEM, such as e-beam and FIB, and it covers in-situ nanomanipulation of materials. The book is written by international experts from the top nano-research groups that specialize in nanomaterials characterization. The book will appeal to nanomaterials researchers, and to SEM development specialists.
Scanning Electron Microscopy and X-Ray Microanalysis
Author: Joseph Goldstein
Publisher: Springer Science & Business Media
ISBN: 1461332737
Category : Science
Languages : en
Pages : 679
Book Description
This book has evolved by processes of selection and expansion from its predecessor, Practical Scanning Electron Microscopy (PSEM), published by Plenum Press in 1975. The interaction of the authors with students at the Short Course on Scanning Electron Microscopy and X-Ray Microanalysis held annually at Lehigh University has helped greatly in developing this textbook. The material has been chosen to provide a student with a general introduction to the techniques of scanning electron microscopy and x-ray microanalysis suitable for application in such fields as biology, geology, solid state physics, and materials science. Following the format of PSEM, this book gives the student a basic knowledge of (1) the user-controlled functions of the electron optics of the scanning electron microscope and electron microprobe, (2) the characteristics of electron-beam-sample inter actions, (3) image formation and interpretation, (4) x-ray spectrometry, and (5) quantitative x-ray microanalysis. Each of these topics has been updated and in most cases expanded over the material presented in PSEM in order to give the reader sufficient coverage to understand these topics and apply the information in the laboratory. Throughout the text, we have attempted to emphasize practical aspects of the techniques, describing those instru ment parameters which the microscopist can and must manipulate to obtain optimum information from the specimen. Certain areas in particular have been expanded in response to their increasing importance in the SEM field. Thus energy-dispersive x-ray spectrometry, which has undergone a tremendous surge in growth, is treated in substantial detail.
Publisher: Springer Science & Business Media
ISBN: 1461332737
Category : Science
Languages : en
Pages : 679
Book Description
This book has evolved by processes of selection and expansion from its predecessor, Practical Scanning Electron Microscopy (PSEM), published by Plenum Press in 1975. The interaction of the authors with students at the Short Course on Scanning Electron Microscopy and X-Ray Microanalysis held annually at Lehigh University has helped greatly in developing this textbook. The material has been chosen to provide a student with a general introduction to the techniques of scanning electron microscopy and x-ray microanalysis suitable for application in such fields as biology, geology, solid state physics, and materials science. Following the format of PSEM, this book gives the student a basic knowledge of (1) the user-controlled functions of the electron optics of the scanning electron microscope and electron microprobe, (2) the characteristics of electron-beam-sample inter actions, (3) image formation and interpretation, (4) x-ray spectrometry, and (5) quantitative x-ray microanalysis. Each of these topics has been updated and in most cases expanded over the material presented in PSEM in order to give the reader sufficient coverage to understand these topics and apply the information in the laboratory. Throughout the text, we have attempted to emphasize practical aspects of the techniques, describing those instru ment parameters which the microscopist can and must manipulate to obtain optimum information from the specimen. Certain areas in particular have been expanded in response to their increasing importance in the SEM field. Thus energy-dispersive x-ray spectrometry, which has undergone a tremendous surge in growth, is treated in substantial detail.
Atom Probe Tomography
Author: Williams Lefebvre
Publisher: Academic Press
ISBN: 0128047453
Category : Science
Languages : en
Pages : 418
Book Description
Atom Probe Tomography is aimed at beginners and researchers interested in expanding their expertise in this area. It provides the theoretical background and practical information necessary to investigate how materials work using atom probe microscopy techniques, and includes detailed explanations of the fundamentals, the instrumentation, contemporary specimen preparation techniques, and experimental details, as well as an overview of the results that can be obtained. The book emphasizes processes for assessing data quality and the proper implementation of advanced data mining algorithms. For those more experienced in the technique, this book will serve as a single comprehensive source of indispensable reference information, tables, and techniques. Both beginner and expert will value the way the book is set out in the context of materials science and engineering. In addition, its references to key research outcomes based upon the training program held at the University of Rouen—one of the leading scientific research centers exploring the various aspects of the instrument—will further enhance understanding and the learning process. - Provides an introduction to the capabilities and limitations of atom probe tomography when analyzing materials - Written for both experienced researchers and new users - Includes exercises, along with corrections, for users to practice the techniques discussed - Contains coverage of more advanced and less widespread techniques, such as correlative APT and STEM microscopy
Publisher: Academic Press
ISBN: 0128047453
Category : Science
Languages : en
Pages : 418
Book Description
Atom Probe Tomography is aimed at beginners and researchers interested in expanding their expertise in this area. It provides the theoretical background and practical information necessary to investigate how materials work using atom probe microscopy techniques, and includes detailed explanations of the fundamentals, the instrumentation, contemporary specimen preparation techniques, and experimental details, as well as an overview of the results that can be obtained. The book emphasizes processes for assessing data quality and the proper implementation of advanced data mining algorithms. For those more experienced in the technique, this book will serve as a single comprehensive source of indispensable reference information, tables, and techniques. Both beginner and expert will value the way the book is set out in the context of materials science and engineering. In addition, its references to key research outcomes based upon the training program held at the University of Rouen—one of the leading scientific research centers exploring the various aspects of the instrument—will further enhance understanding and the learning process. - Provides an introduction to the capabilities and limitations of atom probe tomography when analyzing materials - Written for both experienced researchers and new users - Includes exercises, along with corrections, for users to practice the techniques discussed - Contains coverage of more advanced and less widespread techniques, such as correlative APT and STEM microscopy
Recrystallization and Related Annealing Phenomena
Author: F.J. Humphreys
Publisher: Elsevier
ISBN: 008098388X
Category : Technology & Engineering
Languages : en
Pages : 520
Book Description
The annealing of deformed materials is of both technological importance and scientific interest. The phenomena have been most widely studied in metals, although they occur in all crystalline materials such as the natural deformation of rocks and the processing of technical ceramics. Research is mainly driven by the requirements of industry, and where appropriate, the book discusses the extent to which we are able to formulate quantitative, physically-based models which can be applied to metal-forming processes.The subjects treated in this book are all active research areas, and form a major part of at least four regular international conference series. However, there have only been two monographs published in recent times on the subject of recrystallization, the latest nearly 20 years ago. Since that time, considerable advances have been made, both in our understanding of the subject and in the techniques available to the researcher.The book covers recovery, recrystallization and grain growth in depth including specific chapters on ordered materials, two-phase alloys, annealing textures and annealing during and after hot working. Also contained are treatments of the deformed state and the structure and mobility of grain boundaries, technologically important examples and a chapter on computer simulation and modelling. The book provides a scientific treatment of the subject for researchers or students in Materials Science, Metallurgy and related disciplines, who require a more detailed coverage than is found in textbooks on physical metallurgy, and a more coherent treatment than will be found in the many conference proceedings and review articles.
Publisher: Elsevier
ISBN: 008098388X
Category : Technology & Engineering
Languages : en
Pages : 520
Book Description
The annealing of deformed materials is of both technological importance and scientific interest. The phenomena have been most widely studied in metals, although they occur in all crystalline materials such as the natural deformation of rocks and the processing of technical ceramics. Research is mainly driven by the requirements of industry, and where appropriate, the book discusses the extent to which we are able to formulate quantitative, physically-based models which can be applied to metal-forming processes.The subjects treated in this book are all active research areas, and form a major part of at least four regular international conference series. However, there have only been two monographs published in recent times on the subject of recrystallization, the latest nearly 20 years ago. Since that time, considerable advances have been made, both in our understanding of the subject and in the techniques available to the researcher.The book covers recovery, recrystallization and grain growth in depth including specific chapters on ordered materials, two-phase alloys, annealing textures and annealing during and after hot working. Also contained are treatments of the deformed state and the structure and mobility of grain boundaries, technologically important examples and a chapter on computer simulation and modelling. The book provides a scientific treatment of the subject for researchers or students in Materials Science, Metallurgy and related disciplines, who require a more detailed coverage than is found in textbooks on physical metallurgy, and a more coherent treatment than will be found in the many conference proceedings and review articles.
Microstructure Sensitive Design for Performance Optimization
Author: Brent L. Adams
Publisher: Butterworth-Heinemann
ISBN: 0123972922
Category : Technology & Engineering
Languages : en
Pages : 425
Book Description
The accelerating rate at which new materials are appearing, and transforming the engineering world, only serves to emphasize the vast potential for novel material structure and related performance. Microstructure Sensitive Design for Performance Optimization (MSDPO) embodies a new methodology for systematic design of material microstructure to meet the requirements of design in optimal ways. Intended for materials engineers and researchers in industry, government and academia as well as upper level undergraduate and graduate students studying material science and engineering, MSDPO provides a novel mathematical framework that facilitates a rigorous consideration of the material microstructure as a continuous design variable in the field of engineering design. - Presents new methods and techniques for analysis and optimum design of materials at the microstructure level - Authors' methodology introduces spectral approaches not available in previous texts, such as the incorporation of crystallographic orientation as a variable in the design of engineered components with targeted elastic properties - Numerous illustrations and examples throughout the text help readers grasp the concepts
Publisher: Butterworth-Heinemann
ISBN: 0123972922
Category : Technology & Engineering
Languages : en
Pages : 425
Book Description
The accelerating rate at which new materials are appearing, and transforming the engineering world, only serves to emphasize the vast potential for novel material structure and related performance. Microstructure Sensitive Design for Performance Optimization (MSDPO) embodies a new methodology for systematic design of material microstructure to meet the requirements of design in optimal ways. Intended for materials engineers and researchers in industry, government and academia as well as upper level undergraduate and graduate students studying material science and engineering, MSDPO provides a novel mathematical framework that facilitates a rigorous consideration of the material microstructure as a continuous design variable in the field of engineering design. - Presents new methods and techniques for analysis and optimum design of materials at the microstructure level - Authors' methodology introduces spectral approaches not available in previous texts, such as the incorporation of crystallographic orientation as a variable in the design of engineered components with targeted elastic properties - Numerous illustrations and examples throughout the text help readers grasp the concepts
Reflection High-Energy Electron Diffraction
Author: Ayahiko Ichimiya
Publisher: Cambridge University Press
ISBN: 9780521453738
Category : Science
Languages : en
Pages : 370
Book Description
Publisher Description
Publisher: Cambridge University Press
ISBN: 9780521453738
Category : Science
Languages : en
Pages : 370
Book Description
Publisher Description
X-Ray Line Profile Analysis in Materials Science
Author: Gubicza, Jen?
Publisher: IGI Global
ISBN: 1466658533
Category : Technology & Engineering
Languages : en
Pages : 359
Book Description
X-ray line profile analysis is an effective and non-destructive method for the characterization of the microstructure in crystalline materials. Supporting research in the area of x-ray line profile analysis is necessary in promoting further developments in this field. X-Ray Line Profile Analysis in Materials Science aims to synthesize the existing knowledge of the theory, methodology, and applications of x-ray line profile analysis in real-world settings. This publication presents both the theoretical background and practical implementation of x-ray line profile analysis and serves as a reference source for engineers in various disciplines as well as scholars and upper-level students.
Publisher: IGI Global
ISBN: 1466658533
Category : Technology & Engineering
Languages : en
Pages : 359
Book Description
X-ray line profile analysis is an effective and non-destructive method for the characterization of the microstructure in crystalline materials. Supporting research in the area of x-ray line profile analysis is necessary in promoting further developments in this field. X-Ray Line Profile Analysis in Materials Science aims to synthesize the existing knowledge of the theory, methodology, and applications of x-ray line profile analysis in real-world settings. This publication presents both the theoretical background and practical implementation of x-ray line profile analysis and serves as a reference source for engineers in various disciplines as well as scholars and upper-level students.
Electron Microscopy and Analysis 2001
Author: M. Aindow
Publisher: CRC Press
ISBN: 9780750308120
Category : Science
Languages : en
Pages : 562
Book Description
Electron microscopy is now a mainstay characterization tool for solid state physicists and chemists as well as materials scientists. Electron Microscopy and Analysis 2001 presents a useful snapshot of the latest developments in instrumentation, analysis techniques, and applications of electron and scanning probe microscopies. The book is ideal for materials scientists, solid state physicists and chemists, and researchers in these areas who want to keep abreast of the state of the art in the field.
Publisher: CRC Press
ISBN: 9780750308120
Category : Science
Languages : en
Pages : 562
Book Description
Electron microscopy is now a mainstay characterization tool for solid state physicists and chemists as well as materials scientists. Electron Microscopy and Analysis 2001 presents a useful snapshot of the latest developments in instrumentation, analysis techniques, and applications of electron and scanning probe microscopies. The book is ideal for materials scientists, solid state physicists and chemists, and researchers in these areas who want to keep abreast of the state of the art in the field.