Author: Klaus Kupfer
Publisher: Springer Science & Business Media
ISBN: 3540264914
Category : Technology & Engineering
Languages : en
Pages : 546
Book Description
Mformation about a material can be gathered from its interaction with electromagnetic waves. The information may be stored in the amplitude, the phase, the polarisation, the angular distribution of energy transportation or the spectral characteristics. When re trieved from the wave, certain material properties may thus be determined indirectly. Compared on the one hand to direct material analysis, an indirect method requires calibration and is prone to interference from undesired sources. On the other hand, however, it permits the determination of features inaccessible by direct methods, such as non-destructive material interrogation, high measurement speed, or deep penetration depth. However, being a physical method, the use of electromagnetic waves is still handicapped by the lack of acceptance by many chemists, who are used to applying direct approaches. Historically, the first application of electromagnetic wave interaction with mat ter involved measurement of amplitude changes at a single frequency caused by material properties, and it is still used today by some systems. This approach was soon supplemented by single frequency phase measurements, in order to avoid distortions through amplitude instabilities or parasitic reflections. Such single pa rameter measurements of course require dependence only on one variable in the measured process and sufficient stability of all other ancillary conditions. If that is not the case, the single parameter measurement fails.
Electromagnetic Aquametry
Author: Klaus Kupfer
Publisher: Springer Science & Business Media
ISBN: 3540264914
Category : Technology & Engineering
Languages : en
Pages : 546
Book Description
Mformation about a material can be gathered from its interaction with electromagnetic waves. The information may be stored in the amplitude, the phase, the polarisation, the angular distribution of energy transportation or the spectral characteristics. When re trieved from the wave, certain material properties may thus be determined indirectly. Compared on the one hand to direct material analysis, an indirect method requires calibration and is prone to interference from undesired sources. On the other hand, however, it permits the determination of features inaccessible by direct methods, such as non-destructive material interrogation, high measurement speed, or deep penetration depth. However, being a physical method, the use of electromagnetic waves is still handicapped by the lack of acceptance by many chemists, who are used to applying direct approaches. Historically, the first application of electromagnetic wave interaction with mat ter involved measurement of amplitude changes at a single frequency caused by material properties, and it is still used today by some systems. This approach was soon supplemented by single frequency phase measurements, in order to avoid distortions through amplitude instabilities or parasitic reflections. Such single pa rameter measurements of course require dependence only on one variable in the measured process and sufficient stability of all other ancillary conditions. If that is not the case, the single parameter measurement fails.
Publisher: Springer Science & Business Media
ISBN: 3540264914
Category : Technology & Engineering
Languages : en
Pages : 546
Book Description
Mformation about a material can be gathered from its interaction with electromagnetic waves. The information may be stored in the amplitude, the phase, the polarisation, the angular distribution of energy transportation or the spectral characteristics. When re trieved from the wave, certain material properties may thus be determined indirectly. Compared on the one hand to direct material analysis, an indirect method requires calibration and is prone to interference from undesired sources. On the other hand, however, it permits the determination of features inaccessible by direct methods, such as non-destructive material interrogation, high measurement speed, or deep penetration depth. However, being a physical method, the use of electromagnetic waves is still handicapped by the lack of acceptance by many chemists, who are used to applying direct approaches. Historically, the first application of electromagnetic wave interaction with mat ter involved measurement of amplitude changes at a single frequency caused by material properties, and it is still used today by some systems. This approach was soon supplemented by single frequency phase measurements, in order to avoid distortions through amplitude instabilities or parasitic reflections. Such single pa rameter measurements of course require dependence only on one variable in the measured process and sufficient stability of all other ancillary conditions. If that is not the case, the single parameter measurement fails.
Interaction Of Electromagnetic Waves With Electron Beams And Plasmas
Author: Chuan Sheng Liu
Publisher: World Scientific
ISBN: 9814502634
Category : Science
Languages : en
Pages : 180
Book Description
The interaction of electromagnetic waves with matter has always been a fascinating subject of study. As matter in the universe is mostly in the plasma state, the study of electromagnetic waves in plasmas is of importance to astrophysics, space physics and ionospheric physics. The physics of electromagnetic wave interacting with electron beams and plasmas also serves as a basis for coherent radiation generation such as free electron laser and gyrotron and advanced accelerators. This monograph aims at reviewing the physical processes of linear and nonlinear collective interactions of electromagnetic waves with electron beams and unmagnetized plasmas.
Publisher: World Scientific
ISBN: 9814502634
Category : Science
Languages : en
Pages : 180
Book Description
The interaction of electromagnetic waves with matter has always been a fascinating subject of study. As matter in the universe is mostly in the plasma state, the study of electromagnetic waves in plasmas is of importance to astrophysics, space physics and ionospheric physics. The physics of electromagnetic wave interacting with electron beams and plasmas also serves as a basis for coherent radiation generation such as free electron laser and gyrotron and advanced accelerators. This monograph aims at reviewing the physical processes of linear and nonlinear collective interactions of electromagnetic waves with electron beams and unmagnetized plasmas.
Electromagnetic Wave Interactions
Author: Ardshir Guran
Publisher: World Scientific
ISBN: 9789810226299
Category : Science
Languages : en
Pages : 418
Book Description
This book is a collection of papers on electromagnetic wave mechanics and its applications written by experts in this field. It offers the reader a sampling of exciting research areas in this field. The topics include polarimetric imaging, radar spectroscopy, surface or creeping waves, bistatic radar scattering, the Seebeck affect. Mathematical methods include inverse scattering theory, singularity expansion method, mixed potential integral equation, method of moments, and diffraction theory. Applications include Cellular Mobile Radios (CMR), radar target identification, and Personal Communication Services (PCS). This book shows how electromagnetic wave theory is currently being utilized and investigated. It involves a modicom of mathematical physics and will be of interest to researchers and graduate students in electrical engineering, physics and applied mathematics.
Publisher: World Scientific
ISBN: 9789810226299
Category : Science
Languages : en
Pages : 418
Book Description
This book is a collection of papers on electromagnetic wave mechanics and its applications written by experts in this field. It offers the reader a sampling of exciting research areas in this field. The topics include polarimetric imaging, radar spectroscopy, surface or creeping waves, bistatic radar scattering, the Seebeck affect. Mathematical methods include inverse scattering theory, singularity expansion method, mixed potential integral equation, method of moments, and diffraction theory. Applications include Cellular Mobile Radios (CMR), radar target identification, and Personal Communication Services (PCS). This book shows how electromagnetic wave theory is currently being utilized and investigated. It involves a modicom of mathematical physics and will be of interest to researchers and graduate students in electrical engineering, physics and applied mathematics.
Nonlinear Electron-wave Interaction Phenomena
Author: Joseph Everett Rowe
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 646
Book Description
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 646
Book Description
Tour of the Electromagnetic Spectrum
Author: Ginger Butcher
Publisher:
ISBN:
Category : Artificial satellites
Languages : en
Pages : 32
Book Description
Publisher:
ISBN:
Category : Artificial satellites
Languages : en
Pages : 32
Book Description
Surface Electromagnetics
Author: Fan Yang
Publisher: Cambridge University Press
ISBN: 1108654207
Category : Science
Languages : en
Pages : 489
Book Description
Written by the leading experts in the field, this text provides systematic coverage of the theory, physics, functional designs, and engineering applications of advanced engineered electromagnetic surfaces. All the essential topics are included, from the fundamental theorems of surface electromagnetics, to analytical models, general sheet transmission conditions (GSTC), metasurface synthesis, and quasi-periodic analysis. A plethora of examples throughout illustrate the practical applications of surface electromagnetics, including gap waveguides, modulated metasurface antennas, transmit arrays, microwave imaging, cloaking, and orbital angular momentum (OAM ) beam generation, allowing readers to develop their own surface electromagnetics-based devices and systems. Enabling a fully comprehensive understanding of surface electromagnetics, this is an invaluable text for researchers, practising engineers and students working in electromagnetics antennas, metasurfaces and optics.
Publisher: Cambridge University Press
ISBN: 1108654207
Category : Science
Languages : en
Pages : 489
Book Description
Written by the leading experts in the field, this text provides systematic coverage of the theory, physics, functional designs, and engineering applications of advanced engineered electromagnetic surfaces. All the essential topics are included, from the fundamental theorems of surface electromagnetics, to analytical models, general sheet transmission conditions (GSTC), metasurface synthesis, and quasi-periodic analysis. A plethora of examples throughout illustrate the practical applications of surface electromagnetics, including gap waveguides, modulated metasurface antennas, transmit arrays, microwave imaging, cloaking, and orbital angular momentum (OAM ) beam generation, allowing readers to develop their own surface electromagnetics-based devices and systems. Enabling a fully comprehensive understanding of surface electromagnetics, this is an invaluable text for researchers, practising engineers and students working in electromagnetics antennas, metasurfaces and optics.
Mathematical Techniques for Wave Interaction with Flexible Structures
Author: Trilochan Sahoo
Publisher: CRC Press
ISBN: 1466506059
Category : Mathematics
Languages : en
Pages : 238
Book Description
Mathematical Techniques for Wave Interaction with Flexible Structures is a thoughtful compilation of the various mathematical techniques used to deal with wave structure interaction problems. The book emphasizes unique determination of the solution for a class of physical problems associated with Laplace- or Helmholtz-type equations satisfying high
Publisher: CRC Press
ISBN: 1466506059
Category : Mathematics
Languages : en
Pages : 238
Book Description
Mathematical Techniques for Wave Interaction with Flexible Structures is a thoughtful compilation of the various mathematical techniques used to deal with wave structure interaction problems. The book emphasizes unique determination of the solution for a class of physical problems associated with Laplace- or Helmholtz-type equations satisfying high
Waves: A Very Short Introduction
Author: Mike Goldsmith
Publisher: Oxford University Press
ISBN: 0192525719
Category : Science
Languages : en
Pages : 161
Book Description
We live in a world of waves. The Earth shakes to its foundations, the seas and oceans tremble incessantly, sounds reverberate through land, sea, and air. Beneath the skin, our brains and bodies are awash with waves of their own, and the Universe is filled by a vast spectrum of electromagnetic radiation, of which visible light is the narrowest sliver. Casting the net even wider, there are mechanical waves, quantum wave phenomena, and the now clearly detected gravitational waves. Look closer and deeper and more kinds of waves appear, down to the most fundamental level of reality. This Very Short Introduction looks at all the main kinds of wave, their sources, effects, and uses. Mike Goldsmith discusses how wave motion results in a range of phenomena, from reflection, diffraction, interference, and polarization in the case of light waves to beats and echoes for sound. All waves, however different, share many of the same features, and, as Goldsmith shows, for all their complexities many of their behaviours are fundamentally simple. ABOUT THE SERIES: The Very Short Introductions series from Oxford University Press contains hundreds of titles in almost every subject area. These pocket-sized books are the perfect way to get ahead in a new subject quickly. Our expert authors combine facts, analysis, perspective, new ideas, and enthusiasm to make interesting and challenging topics highly readable.
Publisher: Oxford University Press
ISBN: 0192525719
Category : Science
Languages : en
Pages : 161
Book Description
We live in a world of waves. The Earth shakes to its foundations, the seas and oceans tremble incessantly, sounds reverberate through land, sea, and air. Beneath the skin, our brains and bodies are awash with waves of their own, and the Universe is filled by a vast spectrum of electromagnetic radiation, of which visible light is the narrowest sliver. Casting the net even wider, there are mechanical waves, quantum wave phenomena, and the now clearly detected gravitational waves. Look closer and deeper and more kinds of waves appear, down to the most fundamental level of reality. This Very Short Introduction looks at all the main kinds of wave, their sources, effects, and uses. Mike Goldsmith discusses how wave motion results in a range of phenomena, from reflection, diffraction, interference, and polarization in the case of light waves to beats and echoes for sound. All waves, however different, share many of the same features, and, as Goldsmith shows, for all their complexities many of their behaviours are fundamentally simple. ABOUT THE SERIES: The Very Short Introductions series from Oxford University Press contains hundreds of titles in almost every subject area. These pocket-sized books are the perfect way to get ahead in a new subject quickly. Our expert authors combine facts, analysis, perspective, new ideas, and enthusiasm to make interesting and challenging topics highly readable.
Electromagnetic Technologies in Food Science
Author: Vicente M. Gómez-López
Publisher: John Wiley & Sons
ISBN: 111975951X
Category : Technology & Engineering
Languages : en
Pages : 469
Book Description
A comprehensive source of in-depth information provided on existing and emerging food technologies based on the electromagnetic spectrum Electromagnetic Technologies in Food Science examines various methods employed in food applications that are based on the entire electromagnetic (EM) spectrum. Focusing on recent advances and challenges in food science and technology, this is an up-to-date volume that features vital contributions coming from an international panel of experts who have shared both fundamental and advanced knowledge of information on the dosimetry methods, and on potential applications of gamma irradiation, electron beams, X-rays, radio and microwaves, ultraviolet, visible, pulsed light, and more. Organized into four parts, the text begins with an accessible overview of the physics of the electromagnetic spectrum, followed by discussion on the application of the EM spectrum to non-thermal food processing. The physics of infrared radiation, microwaves, and other advanced heating methods are then deliberated in detail—supported by case studies and examples that illustrate a range of both current and potential applications of EM-based methods. The concluding section of the book describes analytical techniques adopted for quality control, such as hyperspectral imaging, infrared and Raman spectroscopy. This authoritative book resource: Covers advanced theoretical knowledge and practical applications on the use of EM spectrum as novel methods in food processing technology Discusses the latest progress in developing quality control methods, thus enabling the control of continuous fast-speed processes Explores future challenges and benefits of employing electromagnetic spectrum in food technology applications Addresses emerging processing technologies related to improving safety, preservation, and overall quality of various food commodities Electromagnetic Technologies in Food Science is an essential reading material for undergraduate and graduate students, researchers, academics, and agri-food professionals working in the area of food preservation, novel food processing techniques and sustainable food production.
Publisher: John Wiley & Sons
ISBN: 111975951X
Category : Technology & Engineering
Languages : en
Pages : 469
Book Description
A comprehensive source of in-depth information provided on existing and emerging food technologies based on the electromagnetic spectrum Electromagnetic Technologies in Food Science examines various methods employed in food applications that are based on the entire electromagnetic (EM) spectrum. Focusing on recent advances and challenges in food science and technology, this is an up-to-date volume that features vital contributions coming from an international panel of experts who have shared both fundamental and advanced knowledge of information on the dosimetry methods, and on potential applications of gamma irradiation, electron beams, X-rays, radio and microwaves, ultraviolet, visible, pulsed light, and more. Organized into four parts, the text begins with an accessible overview of the physics of the electromagnetic spectrum, followed by discussion on the application of the EM spectrum to non-thermal food processing. The physics of infrared radiation, microwaves, and other advanced heating methods are then deliberated in detail—supported by case studies and examples that illustrate a range of both current and potential applications of EM-based methods. The concluding section of the book describes analytical techniques adopted for quality control, such as hyperspectral imaging, infrared and Raman spectroscopy. This authoritative book resource: Covers advanced theoretical knowledge and practical applications on the use of EM spectrum as novel methods in food processing technology Discusses the latest progress in developing quality control methods, thus enabling the control of continuous fast-speed processes Explores future challenges and benefits of employing electromagnetic spectrum in food technology applications Addresses emerging processing technologies related to improving safety, preservation, and overall quality of various food commodities Electromagnetic Technologies in Food Science is an essential reading material for undergraduate and graduate students, researchers, academics, and agri-food professionals working in the area of food preservation, novel food processing techniques and sustainable food production.
Microwave Aquametry
Author: Andrzej Kraszewski
Publisher: Institute of Electrical & Electronics Engineers(IEEE)
ISBN:
Category : Science
Languages : en
Pages : 512
Book Description
The first book to address all theoretical and practical aspects of electromagnetic wave interaction with water and moist materials, this unique book features 29 full-length, peer-reviewed papers prepared by 69 of the world's experts in aquametry for a key Workshop held in conjunction with the IEEE MTT-S International Microwave Symposium in Atlanta, Georgia, 1993. Collectively, the papers illustrate the physical background of microwave techniques used for moisture content determination, present stimulating examples of applications of microwaves for nondestructive and accurate measurements, and demonstrate successful implementation of techniques in a variety of industries.
Publisher: Institute of Electrical & Electronics Engineers(IEEE)
ISBN:
Category : Science
Languages : en
Pages : 512
Book Description
The first book to address all theoretical and practical aspects of electromagnetic wave interaction with water and moist materials, this unique book features 29 full-length, peer-reviewed papers prepared by 69 of the world's experts in aquametry for a key Workshop held in conjunction with the IEEE MTT-S International Microwave Symposium in Atlanta, Georgia, 1993. Collectively, the papers illustrate the physical background of microwave techniques used for moisture content determination, present stimulating examples of applications of microwaves for nondestructive and accurate measurements, and demonstrate successful implementation of techniques in a variety of industries.