Author: R Guidelli
Publisher: Springer Science & Business Media
ISBN: 940112566X
Category : Science
Languages : en
Pages : 604
Book Description
Electrified interfaces span from metaVsemiconductor and metaVelectrolyte interfaces to disperse systems and biological membranes, and are notably important in so many physical, chemical and biological systems that their study has been tackled by researchers with different scientific backgrounds using different methodological approaches. The various electrified interfaces have several common features. The equilibrium distribution of positive and negative ions in an electrolytic solution is governed by the same Poisson-Boltzmann equation independent of whether the solution comes into contact with a metal, a colloidal particle or a biomembrane, and the same is true for the equilibrium distribution of free electrons and holes of a semiconductor in contact with a different conducting phase. Evaluation of electric potential differences across biomembranes is based on the same identity of electrochemical potentials which holds for a glass electrode and which yields the Nernst equation when applied to a metal/solution interface. The theory of thermally activated electron tunneling, which was developed by Marcus, Levich, Dogonadze and others to account for electron transfer across metaVelectrolyte interfaces, is also applied to light induced charge separation and proton translocation reactions across intercellular membranes. From an experimental viewpoint, the same electrochemical and in situ spectroscopic techniques can equally well be employed for the study of apparently quite different electrified interfaces.
Electrified Interfaces in Physics, Chemistry and Biology
Author: R Guidelli
Publisher: Springer Science & Business Media
ISBN: 940112566X
Category : Science
Languages : en
Pages : 604
Book Description
Electrified interfaces span from metaVsemiconductor and metaVelectrolyte interfaces to disperse systems and biological membranes, and are notably important in so many physical, chemical and biological systems that their study has been tackled by researchers with different scientific backgrounds using different methodological approaches. The various electrified interfaces have several common features. The equilibrium distribution of positive and negative ions in an electrolytic solution is governed by the same Poisson-Boltzmann equation independent of whether the solution comes into contact with a metal, a colloidal particle or a biomembrane, and the same is true for the equilibrium distribution of free electrons and holes of a semiconductor in contact with a different conducting phase. Evaluation of electric potential differences across biomembranes is based on the same identity of electrochemical potentials which holds for a glass electrode and which yields the Nernst equation when applied to a metal/solution interface. The theory of thermally activated electron tunneling, which was developed by Marcus, Levich, Dogonadze and others to account for electron transfer across metaVelectrolyte interfaces, is also applied to light induced charge separation and proton translocation reactions across intercellular membranes. From an experimental viewpoint, the same electrochemical and in situ spectroscopic techniques can equally well be employed for the study of apparently quite different electrified interfaces.
Publisher: Springer Science & Business Media
ISBN: 940112566X
Category : Science
Languages : en
Pages : 604
Book Description
Electrified interfaces span from metaVsemiconductor and metaVelectrolyte interfaces to disperse systems and biological membranes, and are notably important in so many physical, chemical and biological systems that their study has been tackled by researchers with different scientific backgrounds using different methodological approaches. The various electrified interfaces have several common features. The equilibrium distribution of positive and negative ions in an electrolytic solution is governed by the same Poisson-Boltzmann equation independent of whether the solution comes into contact with a metal, a colloidal particle or a biomembrane, and the same is true for the equilibrium distribution of free electrons and holes of a semiconductor in contact with a different conducting phase. Evaluation of electric potential differences across biomembranes is based on the same identity of electrochemical potentials which holds for a glass electrode and which yields the Nernst equation when applied to a metal/solution interface. The theory of thermally activated electron tunneling, which was developed by Marcus, Levich, Dogonadze and others to account for electron transfer across metaVelectrolyte interfaces, is also applied to light induced charge separation and proton translocation reactions across intercellular membranes. From an experimental viewpoint, the same electrochemical and in situ spectroscopic techniques can equally well be employed for the study of apparently quite different electrified interfaces.
Electrified Interfaces in Physics, Chemistry and Biology
Author: R Guidelli
Publisher:
ISBN: 9789401125673
Category :
Languages : en
Pages : 620
Book Description
Publisher:
ISBN: 9789401125673
Category :
Languages : en
Pages : 620
Book Description
Liquid Interfaces In Chemical, Biological And Pharmaceutical Applications
Author: Alexander G. Volkov
Publisher: CRC Press
ISBN: 0824745191
Category : Science
Languages : en
Pages : 1070
Book Description
Offers a comprehensive treatment of surface chemistry and its applications to chemical engineering, biology, and medicine. Focuses on the chmical and physical structure of oil-water interfaces and membrane surfaces. Details interfacial potentials, ion solvation, and electrostatic instabilities in double layers.
Publisher: CRC Press
ISBN: 0824745191
Category : Science
Languages : en
Pages : 1070
Book Description
Offers a comprehensive treatment of surface chemistry and its applications to chemical engineering, biology, and medicine. Focuses on the chmical and physical structure of oil-water interfaces and membrane surfaces. Details interfacial potentials, ion solvation, and electrostatic instabilities in double layers.
Modern Aspects of Electrochemistry
Author: John O'M. Bockris
Publisher: Springer Science & Business Media
ISBN: 0306469235
Category : Science
Languages : en
Pages : 291
Book Description
Recognized experts present incisive analysis of both fundamental and applied problems in this continuation of a highly-acclaimed series. Topics discussed include: The way in which electrochemical systems may function as on a single electrode; The foundational area of voltaic measurements at liquid interfaces; Direct methanol fuel cells, which would avoid the unpleasant necessity faced by the current general of fuel cells - namely, using hydrogen; Dynamic processes in molten salts; Electrochemical techniques and Microbial Induced Corrosion (MIC).
Publisher: Springer Science & Business Media
ISBN: 0306469235
Category : Science
Languages : en
Pages : 291
Book Description
Recognized experts present incisive analysis of both fundamental and applied problems in this continuation of a highly-acclaimed series. Topics discussed include: The way in which electrochemical systems may function as on a single electrode; The foundational area of voltaic measurements at liquid interfaces; Direct methanol fuel cells, which would avoid the unpleasant necessity faced by the current general of fuel cells - namely, using hydrogen; Dynamic processes in molten salts; Electrochemical techniques and Microbial Induced Corrosion (MIC).
Atomic-Scale Modelling of Electrochemical Systems
Author: Marko M. Melander
Publisher: John Wiley & Sons
ISBN: 1119605636
Category : Science
Languages : en
Pages : 372
Book Description
Atomic-Scale Modelling of Electrochemical Systems A comprehensive overview of atomistic computational electrochemistry, discussing methods, implementation, and state-of-the-art applications in the field The first book to review state-of-the-art computational and theoretical methods for modelling, understanding, and predicting the properties of electrochemical interfaces. This book presents a detailed description of the current methods, their background, limitations, and use for addressing the electrochemical interface and reactions. It also highlights several applications in electrocatalysis and electrochemistry. Atomic-Scale Modelling of Electrochemical Systems discusses different ways of including the electrode potential in the computational setup and fixed potential calculations within the framework of grand canonical density functional theory. It examines classical and quantum mechanical models for the solid-liquid interface and formation of an electrochemical double-layer using molecular dynamics and/or continuum descriptions. A thermodynamic description of the interface and reactions taking place at the interface as a function of the electrode potential is provided, as are novel ways to describe rates of heterogeneous electron transfer, proton-coupled electron transfer, and other electrocatalytic reactions. The book also covers multiscale modelling, where atomic level information is used for predicting experimental observables to enable direct comparison with experiments, to rationalize experimental results, and to predict the following electrochemical performance. Uniquely explains how to understand, predict, and optimize the properties and reactivity of electrochemical interfaces starting from the atomic scale Uses an engaging “tutorial style” presentation, highlighting a solid physicochemical background, computational implementation, and applications for different methods, including merits and limitations Bridges the gap between experimental electrochemistry and computational atomistic modelling Written by a team of experts within the field of computational electrochemistry and the wider computational condensed matter community, this book serves as an introduction to the subject for readers entering the field of atom-level electrochemical modeling, while also serving as an invaluable reference for advanced practitioners already working in the field.
Publisher: John Wiley & Sons
ISBN: 1119605636
Category : Science
Languages : en
Pages : 372
Book Description
Atomic-Scale Modelling of Electrochemical Systems A comprehensive overview of atomistic computational electrochemistry, discussing methods, implementation, and state-of-the-art applications in the field The first book to review state-of-the-art computational and theoretical methods for modelling, understanding, and predicting the properties of electrochemical interfaces. This book presents a detailed description of the current methods, their background, limitations, and use for addressing the electrochemical interface and reactions. It also highlights several applications in electrocatalysis and electrochemistry. Atomic-Scale Modelling of Electrochemical Systems discusses different ways of including the electrode potential in the computational setup and fixed potential calculations within the framework of grand canonical density functional theory. It examines classical and quantum mechanical models for the solid-liquid interface and formation of an electrochemical double-layer using molecular dynamics and/or continuum descriptions. A thermodynamic description of the interface and reactions taking place at the interface as a function of the electrode potential is provided, as are novel ways to describe rates of heterogeneous electron transfer, proton-coupled electron transfer, and other electrocatalytic reactions. The book also covers multiscale modelling, where atomic level information is used for predicting experimental observables to enable direct comparison with experiments, to rationalize experimental results, and to predict the following electrochemical performance. Uniquely explains how to understand, predict, and optimize the properties and reactivity of electrochemical interfaces starting from the atomic scale Uses an engaging “tutorial style” presentation, highlighting a solid physicochemical background, computational implementation, and applications for different methods, including merits and limitations Bridges the gap between experimental electrochemistry and computational atomistic modelling Written by a team of experts within the field of computational electrochemistry and the wider computational condensed matter community, this book serves as an introduction to the subject for readers entering the field of atom-level electrochemical modeling, while also serving as an invaluable reference for advanced practitioners already working in the field.
Physics of Surfaces and Interfaces
Author: Harald Ibach
Publisher: Springer Science & Business Media
ISBN: 3540347100
Category : Science
Languages : en
Pages : 653
Book Description
This graduate-level textbook covers the major developments in surface sciences of recent decades, from experimental tricks and basic techniques to the latest experimental methods and theoretical understanding. It is unique in its attempt to treat the physics of surfaces, thin films and interfaces, surface chemistry, thermodynamics, statistical physics and the physics of the solid/electrolyte interface in an integral manner, rather than in separate compartments. It is designed as a handbook for the researcher as well as a study-text for graduate students. Written explanations are supported by 350 graphs and illustrations.
Publisher: Springer Science & Business Media
ISBN: 3540347100
Category : Science
Languages : en
Pages : 653
Book Description
This graduate-level textbook covers the major developments in surface sciences of recent decades, from experimental tricks and basic techniques to the latest experimental methods and theoretical understanding. It is unique in its attempt to treat the physics of surfaces, thin films and interfaces, surface chemistry, thermodynamics, statistical physics and the physics of the solid/electrolyte interface in an integral manner, rather than in separate compartments. It is designed as a handbook for the researcher as well as a study-text for graduate students. Written explanations are supported by 350 graphs and illustrations.
Modern Aspects of Electrochemistry
Author: Ralph E. White
Publisher: Springer Science & Business Media
ISBN: 0306469170
Category : Science
Languages : en
Pages : 654
Book Description
Recognized experts present incisive analysis of both fundamental and applied problems in this continuation of a highly acclaimed series. Topics discussed include: A review of the literature on the potential-of-zero charge by Trasatti and Lust. A thorough review and discussion of nonequilibrium fluctuations in corrosion processes. A wide-ranging discussion of conducting polymers, electrochemistry, and biomimicking processes. Microwave (photo)electrochemistry, from its origins to today's research opportunities, including its relation to electrochemistry. New fluorine cell design, from model development through preliminary engineering modeling, laboratory tests, and pilot plant tests. A comprehensive account of the major and rapidly developing field of the electrochemistry of electronically conducting polymers and their applications. These authoritative studies will be invaluable for researchers in engineering, electrochemistry, analytical chemistry, materials science, physical chemistry, and corrosion science.
Publisher: Springer Science & Business Media
ISBN: 0306469170
Category : Science
Languages : en
Pages : 654
Book Description
Recognized experts present incisive analysis of both fundamental and applied problems in this continuation of a highly acclaimed series. Topics discussed include: A review of the literature on the potential-of-zero charge by Trasatti and Lust. A thorough review and discussion of nonequilibrium fluctuations in corrosion processes. A wide-ranging discussion of conducting polymers, electrochemistry, and biomimicking processes. Microwave (photo)electrochemistry, from its origins to today's research opportunities, including its relation to electrochemistry. New fluorine cell design, from model development through preliminary engineering modeling, laboratory tests, and pilot plant tests. A comprehensive account of the major and rapidly developing field of the electrochemistry of electronically conducting polymers and their applications. These authoritative studies will be invaluable for researchers in engineering, electrochemistry, analytical chemistry, materials science, physical chemistry, and corrosion science.
Liquid Surfaces and Interfaces
Author: Peter S. Pershan
Publisher: Cambridge University Press
ISBN: 0521814014
Category : Science
Languages : en
Pages : 335
Book Description
A practical guide for graduate students and researchers on all aspects of x-ray scattering experiments on liquid surfaces and interfaces.
Publisher: Cambridge University Press
ISBN: 0521814014
Category : Science
Languages : en
Pages : 335
Book Description
A practical guide for graduate students and researchers on all aspects of x-ray scattering experiments on liquid surfaces and interfaces.
Indian Journal of Chemistry
Author:
Publisher:
ISBN:
Category : Analytical chemistry
Languages : en
Pages : 664
Book Description
Publisher:
ISBN:
Category : Analytical chemistry
Languages : en
Pages : 664
Book Description
Nanoscale Probes of the Solid/Liquid Interface
Author: Andrew A. Gewirth
Publisher: Springer Science & Business Media
ISBN: 9401584354
Category : Science
Languages : en
Pages : 340
Book Description
Nanoscale Probes of the Solid--Liquid Interface deals with the use of the scanning tunnelling microscope (STM) and related instrumentation to examine the phenomena occurring at the interface between solid and liquid. Scanning probe microscopy (the collective term for such instruments as the STM, the atomic force microscope and related instrumentation) allows detailed, real space atomic or lattice scale insight into surface structures, information which is ideally correlated with surface reactivity. The use of SPM methods is not restricted to ultrahigh vacuum: the STM and AFM have been used on samples immersed in solution or in ambient air, thus permitting a study of environmental effects on surfaces. At the solid--liquid interface the reactivity derives precisely from the presence of the solution and, in many cases, the application of an external potential. Topics covered in the present volume include: the advantages of studying the solid--liquid interface and the obtaining of additional information from probe measurements; interrelationships between probe tip, the interface and the tunnelling process; STM measurements on semiconductor surfaces; the scanning electrochemical microscope, AFM and the solid--liquid interface; surface X-ray scattering; cluster formation on graphite electrodes; Cu deposition on Au surfaces; macroscopic events following Cu deposition; deposition of small metallic clusters on carbon; overpotential deposition of metals; underpotential deposition; STM on nanoscale ceramic superlattices; reconstruction events on Au(ijk) surfaces; Au surface reconstructions; friction force measurements on graphite steps under potential control; and the biocompatibility of materials.
Publisher: Springer Science & Business Media
ISBN: 9401584354
Category : Science
Languages : en
Pages : 340
Book Description
Nanoscale Probes of the Solid--Liquid Interface deals with the use of the scanning tunnelling microscope (STM) and related instrumentation to examine the phenomena occurring at the interface between solid and liquid. Scanning probe microscopy (the collective term for such instruments as the STM, the atomic force microscope and related instrumentation) allows detailed, real space atomic or lattice scale insight into surface structures, information which is ideally correlated with surface reactivity. The use of SPM methods is not restricted to ultrahigh vacuum: the STM and AFM have been used on samples immersed in solution or in ambient air, thus permitting a study of environmental effects on surfaces. At the solid--liquid interface the reactivity derives precisely from the presence of the solution and, in many cases, the application of an external potential. Topics covered in the present volume include: the advantages of studying the solid--liquid interface and the obtaining of additional information from probe measurements; interrelationships between probe tip, the interface and the tunnelling process; STM measurements on semiconductor surfaces; the scanning electrochemical microscope, AFM and the solid--liquid interface; surface X-ray scattering; cluster formation on graphite electrodes; Cu deposition on Au surfaces; macroscopic events following Cu deposition; deposition of small metallic clusters on carbon; overpotential deposition of metals; underpotential deposition; STM on nanoscale ceramic superlattices; reconstruction events on Au(ijk) surfaces; Au surface reconstructions; friction force measurements on graphite steps under potential control; and the biocompatibility of materials.