Author: Thomas J. Shankland
Publisher: American Geophysical Union
ISBN:
Category : Science
Languages : en
Pages : 580
Book Description
Published by the American Geophysical Union as part of the Special Publications Series. To those who were attracted to geophysics because of the opportunity to do science out?]of?]doors, the idea of laboratory geophysics may seem a strange, if not contradictory, notion. Yet most of what we can say about those parts of the Earth that are not directly accessible comes from comparisons of field ?] derived results with laboratory measurements of physical properties. Perhaps the most successful example of this approach has been in the field of elasticity and equations of state. In application, measured and calculated velocities and densities are used with data derived from seismic velocity profiles to infer composition, mineralogy, and temperature from the lower crust through the mantle and core to the center of the Earth. Such comparisons are routinely applied, for instance, in distinguishing gabbro from granite in the crust. In other cases the methodology is less straightforward and this exercise leads to very controversial conclusions, particularly when in situ conditions are difficult to simulate in the laboratory.
Elastic Properties and Equations of State
Author: Thomas J. Shankland
Publisher: American Geophysical Union
ISBN:
Category : Science
Languages : en
Pages : 580
Book Description
Published by the American Geophysical Union as part of the Special Publications Series. To those who were attracted to geophysics because of the opportunity to do science out?]of?]doors, the idea of laboratory geophysics may seem a strange, if not contradictory, notion. Yet most of what we can say about those parts of the Earth that are not directly accessible comes from comparisons of field ?] derived results with laboratory measurements of physical properties. Perhaps the most successful example of this approach has been in the field of elasticity and equations of state. In application, measured and calculated velocities and densities are used with data derived from seismic velocity profiles to infer composition, mineralogy, and temperature from the lower crust through the mantle and core to the center of the Earth. Such comparisons are routinely applied, for instance, in distinguishing gabbro from granite in the crust. In other cases the methodology is less straightforward and this exercise leads to very controversial conclusions, particularly when in situ conditions are difficult to simulate in the laboratory.
Publisher: American Geophysical Union
ISBN:
Category : Science
Languages : en
Pages : 580
Book Description
Published by the American Geophysical Union as part of the Special Publications Series. To those who were attracted to geophysics because of the opportunity to do science out?]of?]doors, the idea of laboratory geophysics may seem a strange, if not contradictory, notion. Yet most of what we can say about those parts of the Earth that are not directly accessible comes from comparisons of field ?] derived results with laboratory measurements of physical properties. Perhaps the most successful example of this approach has been in the field of elasticity and equations of state. In application, measured and calculated velocities and densities are used with data derived from seismic velocity profiles to infer composition, mineralogy, and temperature from the lower crust through the mantle and core to the center of the Earth. Such comparisons are routinely applied, for instance, in distinguishing gabbro from granite in the crust. In other cases the methodology is less straightforward and this exercise leads to very controversial conclusions, particularly when in situ conditions are difficult to simulate in the laboratory.
Advanced Mineralogy
Author: A. S. Marfunin
Publisher: Springer Science & Business Media
ISBN: 3642785239
Category : Science
Languages : en
Pages : 570
Book Description
All existing introductory reviews of mineralogy are written accord ing to the same algorithm, sometimes called the "Dana System of Mineralogy". Even modern advanced handbooks, which are cer tainly necessary, include basic data on minerals and are essentially descriptive. When basic information on the chemistry, structure, optical and physical properties, distinguished features and para genesis of 200-400 minerals is presented, then there is practically no further space available to include new ideas and concepts based on recent mineral studies. A possible solution to this dilemma would be to present a book beginning where introductory textbooks end for those already famil iar with the elementary concepts. Such a volume would be tailored to specialists in all fields of science and industry, interested in the most recent results in mineralogy. This approach may be called Advanced Mineralogy. Here, an attempt has been made to survey the current possibilities and aims in mineral matter investigations, including the main characteristics of all the methods, the most important problems and topics of mineral ogy, and related studies. The individual volumes are composed of short, condensed chap ters. Each chapter presents in a complete, albeit condensed, form specific problems, methods, theories, and directions of investigations, and estimates their importance and strategic position in science and industry.
Publisher: Springer Science & Business Media
ISBN: 3642785239
Category : Science
Languages : en
Pages : 570
Book Description
All existing introductory reviews of mineralogy are written accord ing to the same algorithm, sometimes called the "Dana System of Mineralogy". Even modern advanced handbooks, which are cer tainly necessary, include basic data on minerals and are essentially descriptive. When basic information on the chemistry, structure, optical and physical properties, distinguished features and para genesis of 200-400 minerals is presented, then there is practically no further space available to include new ideas and concepts based on recent mineral studies. A possible solution to this dilemma would be to present a book beginning where introductory textbooks end for those already famil iar with the elementary concepts. Such a volume would be tailored to specialists in all fields of science and industry, interested in the most recent results in mineralogy. This approach may be called Advanced Mineralogy. Here, an attempt has been made to survey the current possibilities and aims in mineral matter investigations, including the main characteristics of all the methods, the most important problems and topics of mineral ogy, and related studies. The individual volumes are composed of short, condensed chap ters. Each chapter presents in a complete, albeit condensed, form specific problems, methods, theories, and directions of investigations, and estimates their importance and strategic position in science and industry.
Computational Methods for Plasticity
Author: Eduardo A. de Souza Neto
Publisher: John Wiley & Sons
ISBN: 1119964547
Category : Science
Languages : en
Pages : 718
Book Description
The subject of computational plasticity encapsulates the numerical methods used for the finite element simulation of the behaviour of a wide range of engineering materials considered to be plastic – i.e. those that undergo a permanent change of shape in response to an applied force. Computational Methods for Plasticity: Theory and Applications describes the theory of the associated numerical methods for the simulation of a wide range of plastic engineering materials; from the simplest infinitesimal plasticity theory to more complex damage mechanics and finite strain crystal plasticity models. It is split into three parts - basic concepts, small strains and large strains. Beginning with elementary theory and progressing to advanced, complex theory and computer implementation, it is suitable for use at both introductory and advanced levels. The book: Offers a self-contained text that allows the reader to learn computational plasticity theory and its implementation from one volume. Includes many numerical examples that illustrate the application of the methodologies described. Provides introductory material on related disciplines and procedures such as tensor analysis, continuum mechanics and finite elements for non-linear solid mechanics. Is accompanied by purpose-developed finite element software that illustrates many of the techniques discussed in the text, downloadable from the book’s companion website. This comprehensive text will appeal to postgraduate and graduate students of civil, mechanical, aerospace and materials engineering as well as applied mathematics and courses with computational mechanics components. It will also be of interest to research engineers, scientists and software developers working in the field of computational solid mechanics.
Publisher: John Wiley & Sons
ISBN: 1119964547
Category : Science
Languages : en
Pages : 718
Book Description
The subject of computational plasticity encapsulates the numerical methods used for the finite element simulation of the behaviour of a wide range of engineering materials considered to be plastic – i.e. those that undergo a permanent change of shape in response to an applied force. Computational Methods for Plasticity: Theory and Applications describes the theory of the associated numerical methods for the simulation of a wide range of plastic engineering materials; from the simplest infinitesimal plasticity theory to more complex damage mechanics and finite strain crystal plasticity models. It is split into three parts - basic concepts, small strains and large strains. Beginning with elementary theory and progressing to advanced, complex theory and computer implementation, it is suitable for use at both introductory and advanced levels. The book: Offers a self-contained text that allows the reader to learn computational plasticity theory and its implementation from one volume. Includes many numerical examples that illustrate the application of the methodologies described. Provides introductory material on related disciplines and procedures such as tensor analysis, continuum mechanics and finite elements for non-linear solid mechanics. Is accompanied by purpose-developed finite element software that illustrates many of the techniques discussed in the text, downloadable from the book’s companion website. This comprehensive text will appeal to postgraduate and graduate students of civil, mechanical, aerospace and materials engineering as well as applied mathematics and courses with computational mechanics components. It will also be of interest to research engineers, scientists and software developers working in the field of computational solid mechanics.
Equations of State for Solids in Geophysics and Ceramic Science
Author: Orson Anderson
Publisher: Oxford University Press
ISBN: 0195345274
Category : Science
Languages : en
Pages : 426
Book Description
Written by a renowned expert in the field, this book is the most comprehensive treatment available on the applications of equations of state (EoS) in geophysics and materials science, a topic of fundamental importance to those studying the physics and chemistry of the Earth. Part one offers comprehensive treatments of thermal properties associated with EoS, thermodynamic and statistical mechanical backgrounds, and thermoelastic properties. Definitions of the physical properties needed for the EoS are provided as well. Part two discusses the isothermal pressure-volume relationship. The ab initio approach--EoS based upon quantum mechanics fundamentals using numerical methods--is utilized to clearly represent and analyze the measured data. Part three offers an advanced treatment of thermal properties at high temperature, and includes discussions of thermal pressure, shocked solids, and EoS applications to materials science topics such as melting and thermodynamic function. Advanced students, researchers, and professionals in geophysics, ceramics science, solid state physics, and geochemistry will want to read this book.
Publisher: Oxford University Press
ISBN: 0195345274
Category : Science
Languages : en
Pages : 426
Book Description
Written by a renowned expert in the field, this book is the most comprehensive treatment available on the applications of equations of state (EoS) in geophysics and materials science, a topic of fundamental importance to those studying the physics and chemistry of the Earth. Part one offers comprehensive treatments of thermal properties associated with EoS, thermodynamic and statistical mechanical backgrounds, and thermoelastic properties. Definitions of the physical properties needed for the EoS are provided as well. Part two discusses the isothermal pressure-volume relationship. The ab initio approach--EoS based upon quantum mechanics fundamentals using numerical methods--is utilized to clearly represent and analyze the measured data. Part three offers an advanced treatment of thermal properties at high temperature, and includes discussions of thermal pressure, shocked solids, and EoS applications to materials science topics such as melting and thermodynamic function. Advanced students, researchers, and professionals in geophysics, ceramics science, solid state physics, and geochemistry will want to read this book.
Nonlinear Mesoscopic Elasticity
Author: Robert A. Guyer
Publisher: John Wiley & Sons
ISBN: 3527407030
Category : Science
Languages : en
Pages : 410
Book Description
This handbook brings together a great deal of new data on the static and dynamic elastic properties of granular and other composite material. The authors are at the very center of today's research and present new and imported theoretical tools that have enabled our current understanding of the complex behavior of rocks. There are three central themes running throughout the presentation: · Rocks as the prototypical material for defining a class of materials · The PM space model as a useful theoretical construct for developing a phenomenology · A sequence of refined analysis methods. This suite of new methods for both recording and analyzing data is more than a single framework for interpretation, it is also a toolbox for the experimenter. A comprehensive and systematic book of utmost interest to anybody involved in non-destructive testing, civil engineering, and geophysics.
Publisher: John Wiley & Sons
ISBN: 3527407030
Category : Science
Languages : en
Pages : 410
Book Description
This handbook brings together a great deal of new data on the static and dynamic elastic properties of granular and other composite material. The authors are at the very center of today's research and present new and imported theoretical tools that have enabled our current understanding of the complex behavior of rocks. There are three central themes running throughout the presentation: · Rocks as the prototypical material for defining a class of materials · The PM space model as a useful theoretical construct for developing a phenomenology · A sequence of refined analysis methods. This suite of new methods for both recording and analyzing data is more than a single framework for interpretation, it is also a toolbox for the experimenter. A comprehensive and systematic book of utmost interest to anybody involved in non-destructive testing, civil engineering, and geophysics.
Shape Memory Alloy Engineering
Author: Antonio Concilio
Publisher: Elsevier
ISBN: 0080999212
Category : Technology & Engineering
Languages : en
Pages : 449
Book Description
Shape Memory Alloy Engineering introduces materials, mechanical, and aerospace engineers to shape memory alloys (SMAs), providing a unique perspective that combines fundamental theory with new approaches to design and modeling of actual SMAs as compact and inexpensive actuators for use in aerospace and other applications. With this book readers will gain an understanding of the intrinsic properties of SMAs and their characteristic state diagrams, allowing them to design innovative compact actuation systems for applications from aerospace and aeronautics to ships, cars, and trucks. The book realistically discusses both the potential of these fascinating materials as well as their limitations in everyday life, and how to overcome some of those limitations in order to achieve proper design of useful SMA mechanisms. Discusses material characterization processes and results for a number of newer SMAs Incorporates numerical (FE) simulation and integration procedures into commercial codes (Msc/Nastran, Abaqus, and others) Provides detailed examples on design procedures and optimization of SMA-based actuation systems for real cases, from specs to verification lab tests on physical demonstrators One of the few SMA books to include design and set-up of demonstrator characterization tests and correlation with numerical models
Publisher: Elsevier
ISBN: 0080999212
Category : Technology & Engineering
Languages : en
Pages : 449
Book Description
Shape Memory Alloy Engineering introduces materials, mechanical, and aerospace engineers to shape memory alloys (SMAs), providing a unique perspective that combines fundamental theory with new approaches to design and modeling of actual SMAs as compact and inexpensive actuators for use in aerospace and other applications. With this book readers will gain an understanding of the intrinsic properties of SMAs and their characteristic state diagrams, allowing them to design innovative compact actuation systems for applications from aerospace and aeronautics to ships, cars, and trucks. The book realistically discusses both the potential of these fascinating materials as well as their limitations in everyday life, and how to overcome some of those limitations in order to achieve proper design of useful SMA mechanisms. Discusses material characterization processes and results for a number of newer SMAs Incorporates numerical (FE) simulation and integration procedures into commercial codes (Msc/Nastran, Abaqus, and others) Provides detailed examples on design procedures and optimization of SMA-based actuation systems for real cases, from specs to verification lab tests on physical demonstrators One of the few SMA books to include design and set-up of demonstrator characterization tests and correlation with numerical models
LASL Shock Hugoniot Data
Author: Stanley P. Marsh
Publisher: Univ of California Press
ISBN: 9780520040076
Category : Equations of state
Languages : en
Pages : 684
Book Description
Publisher: Univ of California Press
ISBN: 9780520040076
Category : Equations of state
Languages : en
Pages : 684
Book Description
Fundamentals of Rock Physics
Author: Nikolai Bagdassarov
Publisher: Cambridge University Press
ISBN: 1108390196
Category : Science
Languages : en
Pages : 566
Book Description
Rock physics encompasses practically all aspects of solid and fluid state physics. This book provides a unified presentation of the underlying physical principles of rock physics, covering elements of mineral physics, petrology and rock mechanics. After a short introduction on rocks and minerals, the subsequent chapters cover rock density, porosity, stress and strain relationships, permeability, poroelasticity, acoustics, conductivity, polarizability, magnetism, thermal properties and natural radioactivity. Each chapter includes problem sets and focus boxes with in-depth explanations of the physical and mathematical aspects of underlying processes. The book is also supplemented by online MATLAB exercises to help students apply their knowledge to numerically solve rock physics problems. Covering laboratory and field-based measurement methods, as well as theoretical models, this textbook is ideal for upper-level undergraduate and graduate courses in rock physics. It will also make a useful reference for researchers and professional scientists working in geoscience and petroleum engineering.
Publisher: Cambridge University Press
ISBN: 1108390196
Category : Science
Languages : en
Pages : 566
Book Description
Rock physics encompasses practically all aspects of solid and fluid state physics. This book provides a unified presentation of the underlying physical principles of rock physics, covering elements of mineral physics, petrology and rock mechanics. After a short introduction on rocks and minerals, the subsequent chapters cover rock density, porosity, stress and strain relationships, permeability, poroelasticity, acoustics, conductivity, polarizability, magnetism, thermal properties and natural radioactivity. Each chapter includes problem sets and focus boxes with in-depth explanations of the physical and mathematical aspects of underlying processes. The book is also supplemented by online MATLAB exercises to help students apply their knowledge to numerically solve rock physics problems. Covering laboratory and field-based measurement methods, as well as theoretical models, this textbook is ideal for upper-level undergraduate and graduate courses in rock physics. It will also make a useful reference for researchers and professional scientists working in geoscience and petroleum engineering.
Thermodynamics And Equations Of State For Matter: From Ideal Gas To Quark-gluon Plasma
Author: Vladimr E Fortov
Publisher: World Scientific
ISBN: 9814749214
Category : Science
Languages : en
Pages : 569
Book Description
The monograph presents a comparative analysis of different thermodynamic models of the equations of state. The basic ideological premises of the theoretical methods and the experiment are considered. The principal attention is on the description of states that are of greatest interest for the physics of high energy concentrations which are either already attained or can be reached in the near future in controlled terrestrial conditions, or are realized in astrophysical objects at different stages of their evolution. Ultra-extreme astrophysical and nuclear-physical applications are also analyzed where the thermodynamics of matter is affected substantially by relativism, high-power gravitational and magnetic fields, thermal radiation, transformation of nuclear particles, nucleon neutronization, and quark deconfinement. The book is intended for a wide range of specialists engaged in the study of the equations of state of matter and high energy density physics, as well as for senior students and postgraduates.
Publisher: World Scientific
ISBN: 9814749214
Category : Science
Languages : en
Pages : 569
Book Description
The monograph presents a comparative analysis of different thermodynamic models of the equations of state. The basic ideological premises of the theoretical methods and the experiment are considered. The principal attention is on the description of states that are of greatest interest for the physics of high energy concentrations which are either already attained or can be reached in the near future in controlled terrestrial conditions, or are realized in astrophysical objects at different stages of their evolution. Ultra-extreme astrophysical and nuclear-physical applications are also analyzed where the thermodynamics of matter is affected substantially by relativism, high-power gravitational and magnetic fields, thermal radiation, transformation of nuclear particles, nucleon neutronization, and quark deconfinement. The book is intended for a wide range of specialists engaged in the study of the equations of state of matter and high energy density physics, as well as for senior students and postgraduates.
Shape Memory Alloys for Biomedical Applications
Author: T Yoneyama
Publisher: Elsevier
ISBN: 1845695240
Category : Technology & Engineering
Languages : en
Pages : 354
Book Description
Shape memory alloys are suitable for a wide range of biomedical applications, such as dentistry, bone repair and cardiovascular stents. Shape memory alloys for biomedical applications provides a comprehensive review of the use of shape memory alloys in these and other areas of medicine.Part one discusses fundamental issues with chapters on such topics as mechanical properties, fabrication of materials, the shape memory effect, superelasticity, surface modification and biocompatibility. Part two covers applications of shape memory alloys in areas such as stents and orthodontic devices as well as other applications in the medical and dental fields.With its distinguished editors and international team of contributors, Shape memory alloys for biomedical applications is an essential reference for materials scientists and engineers working in the medical devices industry and in academia. - A comprehensive review of shape memory metals and devices for medical applications - Discusses materials, mechanical properties, surface modification and biocompatibility - Chapters review medical and dental devices using shape memory metals, including stents and orthodontic devices
Publisher: Elsevier
ISBN: 1845695240
Category : Technology & Engineering
Languages : en
Pages : 354
Book Description
Shape memory alloys are suitable for a wide range of biomedical applications, such as dentistry, bone repair and cardiovascular stents. Shape memory alloys for biomedical applications provides a comprehensive review of the use of shape memory alloys in these and other areas of medicine.Part one discusses fundamental issues with chapters on such topics as mechanical properties, fabrication of materials, the shape memory effect, superelasticity, surface modification and biocompatibility. Part two covers applications of shape memory alloys in areas such as stents and orthodontic devices as well as other applications in the medical and dental fields.With its distinguished editors and international team of contributors, Shape memory alloys for biomedical applications is an essential reference for materials scientists and engineers working in the medical devices industry and in academia. - A comprehensive review of shape memory metals and devices for medical applications - Discusses materials, mechanical properties, surface modification and biocompatibility - Chapters review medical and dental devices using shape memory metals, including stents and orthodontic devices