Author: Isaak Abramovich Kunin
Publisher:
ISBN:
Category : Elasticity
Languages : en
Pages : 296
Book Description
Elastic Media with Microstructure: Three-dimensional models
Author: Isaak Abramovich Kunin
Publisher:
ISBN:
Category : Elasticity
Languages : en
Pages : 296
Book Description
Publisher:
ISBN:
Category : Elasticity
Languages : en
Pages : 296
Book Description
Elastic Media with Microstructure II
Author: Isaak Abramovich Kunin
Publisher:
ISBN:
Category : Elasticity
Languages : en
Pages : 272
Book Description
Publisher:
ISBN:
Category : Elasticity
Languages : en
Pages : 272
Book Description
Elastic Media with Microstructure II
Author: I. A. Kunin
Publisher: Springer Science & Business Media
ISBN: 3642819605
Category : Science
Languages : en
Pages : 279
Book Description
Crystals and polycrystals, composites and polymers, grids and multibar systems can be considered as examples of media with microstructure. A characteristic feature of all such models is the existence of scale parameters which are con nected with microgeometry or long-range interacting forces. As a result the cor responding theory must essentially be a nonlocal one. This treatment provides a systematic investigation of the effects of micro structure, inner degrees of freedom and non locality in elastic media. The prop agation of linear and nonlinear waves in dispersive media, static, deterministic and stochastic problems, and the theory of local defects and dislocations are considered in detail. Especial attention is paid to approximate models and lim iting transitions to classical elasticity. The book forms the second part of a revised and updated edition of the author's monograph published under the same title in Russian in 1975. The first part (Vol. 26 of Springer Series in Solid-State Sciences) presents a self contained theory of one-dimensional models. The theory of three-dimensional models is considered in this volume. I would like to thank E. Kroner and A. Seeger for supporting the idea of an English edition of my original Russian book. I am also grateful to E. Borie, H. Lotsch and H. Zorski who read the manuscript and offered many sugges tions. Houston, Texas Isaak A. Kunin January, 1983 Contents 1. Introduction ...
Publisher: Springer Science & Business Media
ISBN: 3642819605
Category : Science
Languages : en
Pages : 279
Book Description
Crystals and polycrystals, composites and polymers, grids and multibar systems can be considered as examples of media with microstructure. A characteristic feature of all such models is the existence of scale parameters which are con nected with microgeometry or long-range interacting forces. As a result the cor responding theory must essentially be a nonlocal one. This treatment provides a systematic investigation of the effects of micro structure, inner degrees of freedom and non locality in elastic media. The prop agation of linear and nonlinear waves in dispersive media, static, deterministic and stochastic problems, and the theory of local defects and dislocations are considered in detail. Especial attention is paid to approximate models and lim iting transitions to classical elasticity. The book forms the second part of a revised and updated edition of the author's monograph published under the same title in Russian in 1975. The first part (Vol. 26 of Springer Series in Solid-State Sciences) presents a self contained theory of one-dimensional models. The theory of three-dimensional models is considered in this volume. I would like to thank E. Kroner and A. Seeger for supporting the idea of an English edition of my original Russian book. I am also grateful to E. Borie, H. Lotsch and H. Zorski who read the manuscript and offered many sugges tions. Houston, Texas Isaak A. Kunin January, 1983 Contents 1. Introduction ...
Elastic Media with Microstructure: Three dimensional models
Author: Isaak Abramovich Kunin
Publisher:
ISBN: 9780387111452
Category : Elasticity
Languages : en
Pages :
Book Description
Publisher:
ISBN: 9780387111452
Category : Elasticity
Languages : en
Pages :
Book Description
Continuum Mechanics Modeling of Material Behavior
Author: Martin H. Sadd
Publisher: Academic Press
ISBN: 0128116498
Category : Technology & Engineering
Languages : en
Pages : 432
Book Description
Continuum Mechanics Modeling of Material Behavior offers a uniquely comprehensive introduction to topics like RVE theory, fabric tensor models, micropolar elasticity, elasticity with voids, nonlocal higher gradient elasticity and damage mechanics. Contemporary continuum mechanics research has been moving into areas of complex material microstructural behavior. Graduate students who are expected to do this type of research need a fundamental background beyond classical continuum theories. The book begins with several chapters that carefully and rigorously present mathematical preliminaries: kinematics of motion and deformation; force and stress measures; and general principles of mass, momentum and energy balance. The book then moves beyond other books by dedicating several chapters to constitutive equation development, exploring a wide collection of constitutive relations and developing the corresponding material model formulations. Such material behavior models include classical linear theories of elasticity, fluid mechanics, viscoelasticity and plasticity. Linear multiple field problems of thermoelasticity, poroelasticity and electoelasticity are also presented. Discussion of nonlinear theories of solids and fluids, including finite elasticity, nonlinear/non-Newtonian viscous fluids, and nonlinear viscoelastic materials are also given. Finally, several relatively new continuum theories based on incorporation of material microstructure are presented including: fabric tensor theories, micropolar elasticity, elasticity with voids, nonlocal higher gradient elasticity and damage mechanics. - Offers a thorough, concise and organized presentation of continuum mechanics formulation - Covers numerous applications in areas of contemporary continuum mechanics modeling, including micromechanical and multi-scale problems - Integration and use of MATLAB software gives students more tools to solve, evaluate and plot problems under study - Features extensive use of exercises, providing more material for student engagement and instructor presentation
Publisher: Academic Press
ISBN: 0128116498
Category : Technology & Engineering
Languages : en
Pages : 432
Book Description
Continuum Mechanics Modeling of Material Behavior offers a uniquely comprehensive introduction to topics like RVE theory, fabric tensor models, micropolar elasticity, elasticity with voids, nonlocal higher gradient elasticity and damage mechanics. Contemporary continuum mechanics research has been moving into areas of complex material microstructural behavior. Graduate students who are expected to do this type of research need a fundamental background beyond classical continuum theories. The book begins with several chapters that carefully and rigorously present mathematical preliminaries: kinematics of motion and deformation; force and stress measures; and general principles of mass, momentum and energy balance. The book then moves beyond other books by dedicating several chapters to constitutive equation development, exploring a wide collection of constitutive relations and developing the corresponding material model formulations. Such material behavior models include classical linear theories of elasticity, fluid mechanics, viscoelasticity and plasticity. Linear multiple field problems of thermoelasticity, poroelasticity and electoelasticity are also presented. Discussion of nonlinear theories of solids and fluids, including finite elasticity, nonlinear/non-Newtonian viscous fluids, and nonlinear viscoelastic materials are also given. Finally, several relatively new continuum theories based on incorporation of material microstructure are presented including: fabric tensor theories, micropolar elasticity, elasticity with voids, nonlocal higher gradient elasticity and damage mechanics. - Offers a thorough, concise and organized presentation of continuum mechanics formulation - Covers numerous applications in areas of contemporary continuum mechanics modeling, including micromechanical and multi-scale problems - Integration and use of MATLAB software gives students more tools to solve, evaluate and plot problems under study - Features extensive use of exercises, providing more material for student engagement and instructor presentation
The Quantum Hall Effects
Author: Tapash Chakraborty
Publisher: Springer Science & Business Media
ISBN: 3642793193
Category : Science
Languages : en
Pages : 317
Book Description
The experimental discovery of the fractional quantum Hall effect (FQHE) at the end of 1981 by Tsui, Stormer and Gossard was absolutely unexpected since, at this time, no theoretical work existed that could predict new struc tures in the magnetotransport coefficients under conditions representing the extreme quantum limit. It is more than thirty years since investigations of bulk semiconductors in very strong magnetic fields were begun. Under these conditions, only the lowest Landau level is occupied and the theory predicted a monotonic variation of the resistivity with increasing magnetic field, depending sensitively on the scattering mechanism. However, the ex perimental data could not be analyzed accurately since magnetic freeze-out effects and the transitions from a degenerate to a nondegenerate system complicated the interpretation of the data. For a two-dimensional electron the positive background charge is well separated from the two gas, where dimensional system, magnetic freeze-out effects are barely visible and an analysis of the data in the extreme quantum limit seems to be easier. First measurements in this magnetic field region on silicon field-effect transistors were not successful because the disorder in these devices was so large that all electrons in the lowest Landau level were localized. Consequently, models of a spin glass and finally of a Wigner solid were developed and much effort was put into developing the technology for improving the quality of semi conductor materials and devices, especially in the field of two-dimensional electron systems.
Publisher: Springer Science & Business Media
ISBN: 3642793193
Category : Science
Languages : en
Pages : 317
Book Description
The experimental discovery of the fractional quantum Hall effect (FQHE) at the end of 1981 by Tsui, Stormer and Gossard was absolutely unexpected since, at this time, no theoretical work existed that could predict new struc tures in the magnetotransport coefficients under conditions representing the extreme quantum limit. It is more than thirty years since investigations of bulk semiconductors in very strong magnetic fields were begun. Under these conditions, only the lowest Landau level is occupied and the theory predicted a monotonic variation of the resistivity with increasing magnetic field, depending sensitively on the scattering mechanism. However, the ex perimental data could not be analyzed accurately since magnetic freeze-out effects and the transitions from a degenerate to a nondegenerate system complicated the interpretation of the data. For a two-dimensional electron the positive background charge is well separated from the two gas, where dimensional system, magnetic freeze-out effects are barely visible and an analysis of the data in the extreme quantum limit seems to be easier. First measurements in this magnetic field region on silicon field-effect transistors were not successful because the disorder in these devices was so large that all electrons in the lowest Landau level were localized. Consequently, models of a spin glass and finally of a Wigner solid were developed and much effort was put into developing the technology for improving the quality of semi conductor materials and devices, especially in the field of two-dimensional electron systems.
Physics of Transition Metal Oxides
Author: Sadamichi Maekawa
Publisher: Springer Science & Business Media
ISBN: 3662092980
Category : Technology & Engineering
Languages : en
Pages : 345
Book Description
The fact that magnetite (Fe304) was already known in the Greek era as a peculiar mineral is indicative of the long history of transition metal oxides as useful materials. The discovery of high-temperature superconductivity in 1986 has renewed interest in transition metal oxides. High-temperature su perconductors are all cuprates. Why is it? To answer to this question, we must understand the electronic states in the cuprates. Transition metal oxides are also familiar as magnets. They might be found stuck on the door of your kitchen refrigerator. Magnetic materials are valuable not only as magnets but as electronics materials. Manganites have received special attention recently because of their extremely large magnetoresistance, an effect so large that it is called colossal magnetoresistance (CMR). What is the difference between high-temperature superconducting cuprates and CMR manganites? Elements with incomplete d shells in the periodic table are called tran sition elements. Among them, the following eight elements with the atomic numbers from 22 to 29, i. e. , Ti, V, Cr, Mn, Fe, Co, Ni and Cu are the most im portant. These elements make compounds with oxygen and present a variety of properties. High-temperature superconductivity and CMR are examples. Most of the textbooks on magnetism discuss the magnetic properties of transition metal oxides. However, when one studies magnetism using tradi tional textbooks, one finds that the transport properties are not introduced in the initial stages.
Publisher: Springer Science & Business Media
ISBN: 3662092980
Category : Technology & Engineering
Languages : en
Pages : 345
Book Description
The fact that magnetite (Fe304) was already known in the Greek era as a peculiar mineral is indicative of the long history of transition metal oxides as useful materials. The discovery of high-temperature superconductivity in 1986 has renewed interest in transition metal oxides. High-temperature su perconductors are all cuprates. Why is it? To answer to this question, we must understand the electronic states in the cuprates. Transition metal oxides are also familiar as magnets. They might be found stuck on the door of your kitchen refrigerator. Magnetic materials are valuable not only as magnets but as electronics materials. Manganites have received special attention recently because of their extremely large magnetoresistance, an effect so large that it is called colossal magnetoresistance (CMR). What is the difference between high-temperature superconducting cuprates and CMR manganites? Elements with incomplete d shells in the periodic table are called tran sition elements. Among them, the following eight elements with the atomic numbers from 22 to 29, i. e. , Ti, V, Cr, Mn, Fe, Co, Ni and Cu are the most im portant. These elements make compounds with oxygen and present a variety of properties. High-temperature superconductivity and CMR are examples. Most of the textbooks on magnetism discuss the magnetic properties of transition metal oxides. However, when one studies magnetism using tradi tional textbooks, one finds that the transport properties are not introduced in the initial stages.
Phase Separation in Soft Matter Physics
Author: Pulat K. Khabibullaev
Publisher: Springer Science & Business Media
ISBN: 3662092786
Category : Science
Languages : en
Pages : 190
Book Description
This is the first monograph devoted to investigation of the most complex physical processes of soft systems, including a wide class of solutions. It blends modern theoretical understanding and experimental results, proposing new methods and models for the description of several soft systems.
Publisher: Springer Science & Business Media
ISBN: 3662092786
Category : Science
Languages : en
Pages : 190
Book Description
This is the first monograph devoted to investigation of the most complex physical processes of soft systems, including a wide class of solutions. It blends modern theoretical understanding and experimental results, proposing new methods and models for the description of several soft systems.
Positron Annihilation in Semiconductors
Author: Reinhard Krause-Rehberg
Publisher: Springer Science & Business Media
ISBN: 9783540643715
Category : Science
Languages : en
Pages : 408
Book Description
This comprehensive book reports on recent investigations of lattice imperfections in semiconductors by means of positron annihilation. It reviews positron techniques, and describes the application of these techniques to various kinds of defects, such as vacancies, impurity vacancy complexes and dislocations.
Publisher: Springer Science & Business Media
ISBN: 9783540643715
Category : Science
Languages : en
Pages : 408
Book Description
This comprehensive book reports on recent investigations of lattice imperfections in semiconductors by means of positron annihilation. It reviews positron techniques, and describes the application of these techniques to various kinds of defects, such as vacancies, impurity vacancy complexes and dislocations.
The Quantum Hall Effect
Author: Daijiro Yoshioka
Publisher: Springer Science & Business Media
ISBN: 3662050161
Category : Science
Languages : en
Pages : 214
Book Description
The fractional quantum Hall effect has opened up a new paradigm in the study of strongly correlated electrons and it has been shown that new concepts, such as fractional statistics, anyon, chiral Luttinger liquid and composite particles, are realized in two-dimensional electron systems. This book explains the quantum Hall effects together with these new concepts starting from elementary quantum mechanics.
Publisher: Springer Science & Business Media
ISBN: 3662050161
Category : Science
Languages : en
Pages : 214
Book Description
The fractional quantum Hall effect has opened up a new paradigm in the study of strongly correlated electrons and it has been shown that new concepts, such as fractional statistics, anyon, chiral Luttinger liquid and composite particles, are realized in two-dimensional electron systems. This book explains the quantum Hall effects together with these new concepts starting from elementary quantum mechanics.