Author: Charles R. Johnson
Publisher: Cambridge University Press
ISBN: 110709545X
Category : Mathematics
Languages : en
Pages : 315
Book Description
This book investigates the influence of the graph of a symmetric matrix on the multiplicities of its eigenvalues.
Eigenvalues, Multiplicities and Graphs
Spectra of Graphs
Author: Andries E. Brouwer
Publisher: Springer Science & Business Media
ISBN: 1461419395
Category : Mathematics
Languages : en
Pages : 254
Book Description
This book gives an elementary treatment of the basic material about graph spectra, both for ordinary, and Laplace and Seidel spectra. The text progresses systematically, by covering standard topics before presenting some new material on trees, strongly regular graphs, two-graphs, association schemes, p-ranks of configurations and similar topics. Exercises at the end of each chapter provide practice and vary from easy yet interesting applications of the treated theory, to little excursions into related topics. Tables, references at the end of the book, an author and subject index enrich the text. Spectra of Graphs is written for researchers, teachers and graduate students interested in graph spectra. The reader is assumed to be familiar with basic linear algebra and eigenvalues, although some more advanced topics in linear algebra, like the Perron-Frobenius theorem and eigenvalue interlacing are included.
Publisher: Springer Science & Business Media
ISBN: 1461419395
Category : Mathematics
Languages : en
Pages : 254
Book Description
This book gives an elementary treatment of the basic material about graph spectra, both for ordinary, and Laplace and Seidel spectra. The text progresses systematically, by covering standard topics before presenting some new material on trees, strongly regular graphs, two-graphs, association schemes, p-ranks of configurations and similar topics. Exercises at the end of each chapter provide practice and vary from easy yet interesting applications of the treated theory, to little excursions into related topics. Tables, references at the end of the book, an author and subject index enrich the text. Spectra of Graphs is written for researchers, teachers and graduate students interested in graph spectra. The reader is assumed to be familiar with basic linear algebra and eigenvalues, although some more advanced topics in linear algebra, like the Perron-Frobenius theorem and eigenvalue interlacing are included.
Combinatorial and Graph-Theoretical Problems in Linear Algebra
Author: Richard A. Brualdi
Publisher: Springer Science & Business Media
ISBN: 1461383544
Category : Mathematics
Languages : en
Pages : 266
Book Description
This IMA Volume in Mathematics and its Applications COMBINATORIAL AND GRAPH-THEORETICAL PROBLEMS IN LINEAR ALGEBRA is based on the proceedings of a workshop that was an integral part of the 1991-92 IMA program on "Applied Linear Algebra." We are grateful to Richard Brualdi, George Cybenko, Alan George, Gene Golub, Mitchell Luskin, and Paul Van Dooren for planning and implementing the year-long program. We especially thank Richard Brualdi, Shmuel Friedland, and Victor Klee for organizing this workshop and editing the proceedings. The financial support of the National Science Foundation made the workshop possible. A vner Friedman Willard Miller, Jr. PREFACE The 1991-1992 program of the Institute for Mathematics and its Applications (IMA) was Applied Linear Algebra. As part of this program, a workshop on Com binatorial and Graph-theoretical Problems in Linear Algebra was held on November 11-15, 1991. The purpose of the workshop was to bring together in an informal setting the diverse group of people who work on problems in linear algebra and matrix theory in which combinatorial or graph~theoretic analysis is a major com ponent. Many of the participants of the workshop enjoyed the hospitality of the IMA for the entire fall quarter, in which the emphasis was discrete matrix analysis.
Publisher: Springer Science & Business Media
ISBN: 1461383544
Category : Mathematics
Languages : en
Pages : 266
Book Description
This IMA Volume in Mathematics and its Applications COMBINATORIAL AND GRAPH-THEORETICAL PROBLEMS IN LINEAR ALGEBRA is based on the proceedings of a workshop that was an integral part of the 1991-92 IMA program on "Applied Linear Algebra." We are grateful to Richard Brualdi, George Cybenko, Alan George, Gene Golub, Mitchell Luskin, and Paul Van Dooren for planning and implementing the year-long program. We especially thank Richard Brualdi, Shmuel Friedland, and Victor Klee for organizing this workshop and editing the proceedings. The financial support of the National Science Foundation made the workshop possible. A vner Friedman Willard Miller, Jr. PREFACE The 1991-1992 program of the Institute for Mathematics and its Applications (IMA) was Applied Linear Algebra. As part of this program, a workshop on Com binatorial and Graph-theoretical Problems in Linear Algebra was held on November 11-15, 1991. The purpose of the workshop was to bring together in an informal setting the diverse group of people who work on problems in linear algebra and matrix theory in which combinatorial or graph~theoretic analysis is a major com ponent. Many of the participants of the workshop enjoyed the hospitality of the IMA for the entire fall quarter, in which the emphasis was discrete matrix analysis.
Computational Algebra and Number Theory
Author: Wieb Bosma
Publisher: Springer Science & Business Media
ISBN: 9401711089
Category : Mathematics
Languages : en
Pages : 326
Book Description
Computers have stretched the limits of what is possible in mathematics. More: they have given rise to new fields of mathematical study; the analysis of new and traditional algorithms, the creation of new paradigms for implementing computational methods, the viewing of old techniques from a concrete algorithmic vantage point, to name but a few. Computational Algebra and Number Theory lies at the lively intersection of computer science and mathematics. It highlights the surprising width and depth of the field through examples drawn from current activity, ranging from category theory, graph theory and combinatorics, to more classical computational areas, such as group theory and number theory. Many of the papers in the book provide a survey of their topic, as well as a description of present research. Throughout the variety of mathematical and computational fields represented, the emphasis is placed on the common principles and the methods employed. Audience: Students, experts, and those performing current research in any of the topics mentioned above.
Publisher: Springer Science & Business Media
ISBN: 9401711089
Category : Mathematics
Languages : en
Pages : 326
Book Description
Computers have stretched the limits of what is possible in mathematics. More: they have given rise to new fields of mathematical study; the analysis of new and traditional algorithms, the creation of new paradigms for implementing computational methods, the viewing of old techniques from a concrete algorithmic vantage point, to name but a few. Computational Algebra and Number Theory lies at the lively intersection of computer science and mathematics. It highlights the surprising width and depth of the field through examples drawn from current activity, ranging from category theory, graph theory and combinatorics, to more classical computational areas, such as group theory and number theory. Many of the papers in the book provide a survey of their topic, as well as a description of present research. Throughout the variety of mathematical and computational fields represented, the emphasis is placed on the common principles and the methods employed. Audience: Students, experts, and those performing current research in any of the topics mentioned above.
Spectra of Graphs
Author: Dragoš M. Cvetković
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 374
Book Description
The theory of graph spectra can, in a way, be considered as an attempt to utilize linear algebra including, in particular, the well-developed theory of matrices for the purposes of graph theory and its applications. to the theory of matrices; on the contrary, it has its own characteristic features and specific ways of reasoning fully justifying it to be treated as a theory in its own right.
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 374
Book Description
The theory of graph spectra can, in a way, be considered as an attempt to utilize linear algebra including, in particular, the well-developed theory of matrices for the purposes of graph theory and its applications. to the theory of matrices; on the contrary, it has its own characteristic features and specific ways of reasoning fully justifying it to be treated as a theory in its own right.
An Introduction to the Theory of Graph Spectra
Author: Dragoš Cvetković
Publisher: Cambridge University Press
ISBN: 9780521134088
Category : Mathematics
Languages : en
Pages : 0
Book Description
This introductory text explores the theory of graph spectra: a topic with applications across a wide range of subjects, including computer science, quantum chemistry and electrical engineering. The spectra examined here are those of the adjacency matrix, the Seidel matrix, the Laplacian, the normalized Laplacian and the signless Laplacian of a finite simple graph. The underlying theme of the book is the relation between the eigenvalues and structure of a graph. Designed as an introductory text for graduate students, or anyone using the theory of graph spectra, this self-contained treatment assumes only a little knowledge of graph theory and linear algebra. The authors include many new developments in the field which arise as a result of rapidly expanding interest in the area. Exercises, spectral data and proofs of required results are also provided. The end-of-chapter notes serve as a practical guide to the extensive bibliography of over 500 items.
Publisher: Cambridge University Press
ISBN: 9780521134088
Category : Mathematics
Languages : en
Pages : 0
Book Description
This introductory text explores the theory of graph spectra: a topic with applications across a wide range of subjects, including computer science, quantum chemistry and electrical engineering. The spectra examined here are those of the adjacency matrix, the Seidel matrix, the Laplacian, the normalized Laplacian and the signless Laplacian of a finite simple graph. The underlying theme of the book is the relation between the eigenvalues and structure of a graph. Designed as an introductory text for graduate students, or anyone using the theory of graph spectra, this self-contained treatment assumes only a little knowledge of graph theory and linear algebra. The authors include many new developments in the field which arise as a result of rapidly expanding interest in the area. Exercises, spectral data and proofs of required results are also provided. The end-of-chapter notes serve as a practical guide to the extensive bibliography of over 500 items.
Graphs and Matrices
Author: Ravindra B. Bapat
Publisher: Springer
ISBN: 1447165691
Category : Mathematics
Languages : en
Pages : 197
Book Description
This new edition illustrates the power of linear algebra in the study of graphs. The emphasis on matrix techniques is greater than in other texts on algebraic graph theory. Important matrices associated with graphs (for example, incidence, adjacency and Laplacian matrices) are treated in detail. Presenting a useful overview of selected topics in algebraic graph theory, early chapters of the text focus on regular graphs, algebraic connectivity, the distance matrix of a tree, and its generalized version for arbitrary graphs, known as the resistance matrix. Coverage of later topics include Laplacian eigenvalues of threshold graphs, the positive definite completion problem and matrix games based on a graph. Such an extensive coverage of the subject area provides a welcome prompt for further exploration. The inclusion of exercises enables practical learning throughout the book. In the new edition, a new chapter is added on the line graph of a tree, while some results in Chapter 6 on Perron-Frobenius theory are reorganized. Whilst this book will be invaluable to students and researchers in graph theory and combinatorial matrix theory, it will also benefit readers in the sciences and engineering.
Publisher: Springer
ISBN: 1447165691
Category : Mathematics
Languages : en
Pages : 197
Book Description
This new edition illustrates the power of linear algebra in the study of graphs. The emphasis on matrix techniques is greater than in other texts on algebraic graph theory. Important matrices associated with graphs (for example, incidence, adjacency and Laplacian matrices) are treated in detail. Presenting a useful overview of selected topics in algebraic graph theory, early chapters of the text focus on regular graphs, algebraic connectivity, the distance matrix of a tree, and its generalized version for arbitrary graphs, known as the resistance matrix. Coverage of later topics include Laplacian eigenvalues of threshold graphs, the positive definite completion problem and matrix games based on a graph. Such an extensive coverage of the subject area provides a welcome prompt for further exploration. The inclusion of exercises enables practical learning throughout the book. In the new edition, a new chapter is added on the line graph of a tree, while some results in Chapter 6 on Perron-Frobenius theory are reorganized. Whilst this book will be invaluable to students and researchers in graph theory and combinatorial matrix theory, it will also benefit readers in the sciences and engineering.
Eigenspaces of Graphs
Author: Dragoš M. Cvetković
Publisher: Cambridge University Press
ISBN: 0521573521
Category : Mathematics
Languages : en
Pages : 284
Book Description
Current research on the spectral theory of finite graphs may be seen as part of a wider effort to forge closer links between algebra and combinatorics (in particular between linear algebra and graph theory).This book describes how this topic can be strengthened by exploiting properties of the eigenspaces of adjacency matrices associated with a graph. The extension of spectral techniques proceeds at three levels: using eigenvectors associated with an arbitrary labelling of graph vertices, using geometrical invariants of eigenspaces such as graph angles and main angles, and introducing certain kinds of canonical eigenvectors by means of star partitions and star bases. One objective is to describe graphs by algebraic means as far as possible, and the book discusses the Ulam reconstruction conjecture and the graph isomorphism problem in this context. Further problems of graph reconstruction and identification are used to illustrate the importance of graph angles and star partitions in relation to graph structure. Specialists in graph theory will welcome this treatment of important new research.
Publisher: Cambridge University Press
ISBN: 0521573521
Category : Mathematics
Languages : en
Pages : 284
Book Description
Current research on the spectral theory of finite graphs may be seen as part of a wider effort to forge closer links between algebra and combinatorics (in particular between linear algebra and graph theory).This book describes how this topic can be strengthened by exploiting properties of the eigenspaces of adjacency matrices associated with a graph. The extension of spectral techniques proceeds at three levels: using eigenvectors associated with an arbitrary labelling of graph vertices, using geometrical invariants of eigenspaces such as graph angles and main angles, and introducing certain kinds of canonical eigenvectors by means of star partitions and star bases. One objective is to describe graphs by algebraic means as far as possible, and the book discusses the Ulam reconstruction conjecture and the graph isomorphism problem in this context. Further problems of graph reconstruction and identification are used to illustrate the importance of graph angles and star partitions in relation to graph structure. Specialists in graph theory will welcome this treatment of important new research.
Locating Eigenvalues in Graphs
Author: Carlos Hoppen
Publisher: Springer Nature
ISBN: 3031116984
Category : Mathematics
Languages : en
Pages : 142
Book Description
This book focuses on linear time eigenvalue location algorithms for graphs. This subject relates to spectral graph theory, a field that combines tools and concepts of linear algebra and combinatorics, with applications ranging from image processing and data analysis to molecular descriptors and random walks. It has attracted a lot of attention and has since emerged as an area on its own. Studies in spectral graph theory seek to determine properties of a graph through matrices associated with it. It turns out that eigenvalues and eigenvectors have surprisingly many connections with the structure of a graph. This book approaches this subject under the perspective of eigenvalue location algorithms. These are algorithms that, given a symmetric graph matrix M and a real interval I, return the number of eigenvalues of M that lie in I. Since the algorithms described here are typically very fast, they allow one to quickly approximate the value of any eigenvalue, which is a basic step in most applications of spectral graph theory. Moreover, these algorithms are convenient theoretical tools for proving bounds on eigenvalues and their multiplicities, which was quite useful to solve longstanding open problems in the area. This book brings these algorithms together, revealing how similar they are in spirit, and presents some of their main applications. This work can be of special interest to graduate students and researchers in spectral graph theory, and to any mathematician who wishes to know more about eigenvalues associated with graphs. It can also serve as a compact textbook for short courses on the topic.
Publisher: Springer Nature
ISBN: 3031116984
Category : Mathematics
Languages : en
Pages : 142
Book Description
This book focuses on linear time eigenvalue location algorithms for graphs. This subject relates to spectral graph theory, a field that combines tools and concepts of linear algebra and combinatorics, with applications ranging from image processing and data analysis to molecular descriptors and random walks. It has attracted a lot of attention and has since emerged as an area on its own. Studies in spectral graph theory seek to determine properties of a graph through matrices associated with it. It turns out that eigenvalues and eigenvectors have surprisingly many connections with the structure of a graph. This book approaches this subject under the perspective of eigenvalue location algorithms. These are algorithms that, given a symmetric graph matrix M and a real interval I, return the number of eigenvalues of M that lie in I. Since the algorithms described here are typically very fast, they allow one to quickly approximate the value of any eigenvalue, which is a basic step in most applications of spectral graph theory. Moreover, these algorithms are convenient theoretical tools for proving bounds on eigenvalues and their multiplicities, which was quite useful to solve longstanding open problems in the area. This book brings these algorithms together, revealing how similar they are in spirit, and presents some of their main applications. This work can be of special interest to graduate students and researchers in spectral graph theory, and to any mathematician who wishes to know more about eigenvalues associated with graphs. It can also serve as a compact textbook for short courses on the topic.
Inverse Problems and Zero Forcing for Graphs
Author: Leslie Hogben
Publisher: American Mathematical Society
ISBN: 1470466554
Category : Mathematics
Languages : en
Pages : 302
Book Description
This book provides an introduction to the inverse eigenvalue problem for graphs (IEP-$G$) and the related area of zero forcing, propagation, and throttling. The IEP-$G$ grew from the intersection of linear algebra and combinatorics and has given rise to both a rich set of deep problems in that area as well as a breadth of “ancillary” problems in related areas. The IEP-$G$ asks a fundamental mathematical question expressed in terms of linear algebra and graph theory, but the significance of such questions goes beyond these two areas, as particular instances of the IEP-$G$ also appear as major research problems in other fields of mathematics, sciences and engineering. One approach to the IEP-$G$ is through rank minimization, a relevant problem in itself and with a large number of applications. During the past 10 years, important developments on the rank minimization problem, particularly in relation to zero forcing, have led to significant advances in the IEP-$G$. The monograph serves as an entry point and valuable resource that will stimulate future developments in this active and mathematically diverse research area.
Publisher: American Mathematical Society
ISBN: 1470466554
Category : Mathematics
Languages : en
Pages : 302
Book Description
This book provides an introduction to the inverse eigenvalue problem for graphs (IEP-$G$) and the related area of zero forcing, propagation, and throttling. The IEP-$G$ grew from the intersection of linear algebra and combinatorics and has given rise to both a rich set of deep problems in that area as well as a breadth of “ancillary” problems in related areas. The IEP-$G$ asks a fundamental mathematical question expressed in terms of linear algebra and graph theory, but the significance of such questions goes beyond these two areas, as particular instances of the IEP-$G$ also appear as major research problems in other fields of mathematics, sciences and engineering. One approach to the IEP-$G$ is through rank minimization, a relevant problem in itself and with a large number of applications. During the past 10 years, important developments on the rank minimization problem, particularly in relation to zero forcing, have led to significant advances in the IEP-$G$. The monograph serves as an entry point and valuable resource that will stimulate future developments in this active and mathematically diverse research area.