Author: Stefan Turek
Publisher: Springer Science & Business Media
ISBN: 3642583938
Category : Mathematics
Languages : en
Pages : 369
Book Description
A discussion of recent numerical and algorithmic tools for the solution of certain flow problems arising in CFD, which are governed by the incompressible Navier-Stokes equations. The book contains the latest results for the numerical solution of (complex) flow problems on modern computer platforms, with particular emphasis on the solution process of the resulting high dimensional discrete systems of equations which is often neglected in other works. Together with the accompanying CD ROM containing the complete FEATFLOW 1.1 software and parts of the "Virtual Album of Fluid Motion", readers are able to perform their own numerical simulations and will find numerous suggestions for improving their own computational simulations.
Efficient Solvers for Incompressible Flow Problems
Author: Stefan Turek
Publisher: Springer Science & Business Media
ISBN: 3642583938
Category : Mathematics
Languages : en
Pages : 369
Book Description
A discussion of recent numerical and algorithmic tools for the solution of certain flow problems arising in CFD, which are governed by the incompressible Navier-Stokes equations. The book contains the latest results for the numerical solution of (complex) flow problems on modern computer platforms, with particular emphasis on the solution process of the resulting high dimensional discrete systems of equations which is often neglected in other works. Together with the accompanying CD ROM containing the complete FEATFLOW 1.1 software and parts of the "Virtual Album of Fluid Motion", readers are able to perform their own numerical simulations and will find numerous suggestions for improving their own computational simulations.
Publisher: Springer Science & Business Media
ISBN: 3642583938
Category : Mathematics
Languages : en
Pages : 369
Book Description
A discussion of recent numerical and algorithmic tools for the solution of certain flow problems arising in CFD, which are governed by the incompressible Navier-Stokes equations. The book contains the latest results for the numerical solution of (complex) flow problems on modern computer platforms, with particular emphasis on the solution process of the resulting high dimensional discrete systems of equations which is often neglected in other works. Together with the accompanying CD ROM containing the complete FEATFLOW 1.1 software and parts of the "Virtual Album of Fluid Motion", readers are able to perform their own numerical simulations and will find numerous suggestions for improving their own computational simulations.
An Efficient Parallel Multigrid Solver for 3-D Convection-dominated Problems
Author: Ignacio M. Llorente
Publisher:
ISBN:
Category : Boundary value problems
Languages : en
Pages : 36
Book Description
Multigrid algorithms are known to be highly efficient in solving systems of elliptic equations. However, standard multi grid algorithms fail to achieve optimal grid-independent convergence rates in solving non-elliptic problems. In many practical cases, the non-elliptic part of a problem is represented by the convection operator. Downstream marching, when it is viable, is the simplest and most efficient way to solve this operator. However, in a parallel setting, the sequential nature of marching degrades the efficiency of the algorithm. The aim of this report is to present, evaluate and analyze an alternative highly parallel multi grid method for 3-D convection-dominated problems. This method employs semi coarsening, a four-color plane-implicit smoother, and discretization rules allowing the same cross-characteristic interactions on all the grids involved to be maintained. The resulting multigrid solver exhibits a fast grid-independent convergence rate for solving the convection-diffusion operator on cell-centered grids with stretching. The load imbalance below the critical level is the main source of inefficiency in its parallel implementation. A hybrid smoother that degrades the convergence properties of the method but improves its granularity has been found to be the best choice in a parallel setting. The numerical and parallel properties of the multi grid algorithm with the four-color and hybrid smoothers are studied on SGI Origin 2000 and Cray T3E systems.
Publisher:
ISBN:
Category : Boundary value problems
Languages : en
Pages : 36
Book Description
Multigrid algorithms are known to be highly efficient in solving systems of elliptic equations. However, standard multi grid algorithms fail to achieve optimal grid-independent convergence rates in solving non-elliptic problems. In many practical cases, the non-elliptic part of a problem is represented by the convection operator. Downstream marching, when it is viable, is the simplest and most efficient way to solve this operator. However, in a parallel setting, the sequential nature of marching degrades the efficiency of the algorithm. The aim of this report is to present, evaluate and analyze an alternative highly parallel multi grid method for 3-D convection-dominated problems. This method employs semi coarsening, a four-color plane-implicit smoother, and discretization rules allowing the same cross-characteristic interactions on all the grids involved to be maintained. The resulting multigrid solver exhibits a fast grid-independent convergence rate for solving the convection-diffusion operator on cell-centered grids with stretching. The load imbalance below the critical level is the main source of inefficiency in its parallel implementation. A hybrid smoother that degrades the convergence properties of the method but improves its granularity has been found to be the best choice in a parallel setting. The numerical and parallel properties of the multi grid algorithm with the four-color and hybrid smoothers are studied on SGI Origin 2000 and Cray T3E systems.
A Parallel Multigrid Solver for Viscous Flows on Anisotropic Structured Grids
Author: Manuel Prieto
Publisher:
ISBN:
Category : Multigrid methods (Numerical analysis)
Languages : en
Pages : 26
Book Description
Abstract: "This paper presents an efficient parallel multigrid solver for speeding up the computation of a 3-D model that treats the flow of a viscous fluid over a flat plate. The main interest of this simulation lies in exhibiting some basic difficulties that prevent optimal multigrid efficiencies from being achieved. As the computing platform, we have used Coral, a Beowulf-class system based on Intel Pentium processors and equipped with GigaNet cLAN and switched Fast Ethernet networks. Our study not only examines the scalability of the solver but also includes a performance evaluation of Coral where the investigated solver has been used to compare several of its design choices, namely, the interconnection network (GigaNet versus switched Fast-Ethernet) and the node configuration (dual nodes versus single nodes). As a reference, the performance results have been compared with those obtained with the NAS-MG benchmark."
Publisher:
ISBN:
Category : Multigrid methods (Numerical analysis)
Languages : en
Pages : 26
Book Description
Abstract: "This paper presents an efficient parallel multigrid solver for speeding up the computation of a 3-D model that treats the flow of a viscous fluid over a flat plate. The main interest of this simulation lies in exhibiting some basic difficulties that prevent optimal multigrid efficiencies from being achieved. As the computing platform, we have used Coral, a Beowulf-class system based on Intel Pentium processors and equipped with GigaNet cLAN and switched Fast Ethernet networks. Our study not only examines the scalability of the solver but also includes a performance evaluation of Coral where the investigated solver has been used to compare several of its design choices, namely, the interconnection network (GigaNet versus switched Fast-Ethernet) and the node configuration (dual nodes versus single nodes). As a reference, the performance results have been compared with those obtained with the NAS-MG benchmark."
A Multigrid Tutorial
Author: William L. Briggs
Publisher: SIAM
ISBN: 9780898714623
Category : Mathematics
Languages : en
Pages : 318
Book Description
Mathematics of Computing -- Numerical Analysis.
Publisher: SIAM
ISBN: 9780898714623
Category : Mathematics
Languages : en
Pages : 318
Book Description
Mathematics of Computing -- Numerical Analysis.
Applied Mechanics Reviews
Author:
Publisher:
ISBN:
Category : Mechanics, Applied
Languages : en
Pages : 528
Book Description
Publisher:
ISBN:
Category : Mechanics, Applied
Languages : en
Pages : 528
Book Description
Multigrid Methods
Author: Ulrich Trottenberg
Publisher: Academic Press
ISBN: 9780127010700
Category : Mathematics
Languages : en
Pages : 652
Book Description
Mathematics of Computing -- Numerical Analysis.
Publisher: Academic Press
ISBN: 9780127010700
Category : Mathematics
Languages : en
Pages : 652
Book Description
Mathematics of Computing -- Numerical Analysis.
An Introduction to Multigrid Methods
Author: Pieter Wesseling
Publisher: R.T. Edwards, Inc.
ISBN:
Category : Mathematics
Languages : en
Pages : 300
Book Description
Introduces the principles, techniques, applications and literature of multigrid methods. Aimed at an audience with non-mathematical but computing-intensive disciplines and basic knowledge of analysis, partial differential equations and numerical mathematics, it is packed with helpful exercises, examples and illustrations.
Publisher: R.T. Edwards, Inc.
ISBN:
Category : Mathematics
Languages : en
Pages : 300
Book Description
Introduces the principles, techniques, applications and literature of multigrid methods. Aimed at an audience with non-mathematical but computing-intensive disciplines and basic knowledge of analysis, partial differential equations and numerical mathematics, it is packed with helpful exercises, examples and illustrations.
Lattice 91
Author: M. Fukugita
Publisher: Elsevier
ISBN: 1483278050
Category : Science
Languages : en
Pages : 699
Book Description
Lattice 91 covers the proceedings of the International Symposium on Lattice Field Theory held in Tsukuba, Japan on 5-9 November 1991. The book focuses on quantum chromodynamics, Higgs-fermion theories, QED, lattice quantum gravity and random surfaces, spin systems related to field theory, simulation algorithms, and dedicated computers. The selection first offers information on the QCD spectrum and phase diagram on the lattice and QCD at finite density, including phase structure of QCD, Monte-Carlo simulations with dynamical fermions, and quenched approximation. The book then tackles weak matrix elements, simulation of heavy quarks, and sphaleron induced baryon number non-conservation. The text reviews quantum gravity and random surfaces, recent analytic progress in finite size effects, and parallel QCD machines. Discussions focus on two-dimensional quantum gravity, signatures of resonance in finite volume, first order transitions, and determination of the running coupling. The publication also ponders on hadronic forces from the lattice, universality of the confinement string in multiple potentials, and confinement and saddle-point configurations. The selection is highly recommended for readers interested in the lattice field theory.
Publisher: Elsevier
ISBN: 1483278050
Category : Science
Languages : en
Pages : 699
Book Description
Lattice 91 covers the proceedings of the International Symposium on Lattice Field Theory held in Tsukuba, Japan on 5-9 November 1991. The book focuses on quantum chromodynamics, Higgs-fermion theories, QED, lattice quantum gravity and random surfaces, spin systems related to field theory, simulation algorithms, and dedicated computers. The selection first offers information on the QCD spectrum and phase diagram on the lattice and QCD at finite density, including phase structure of QCD, Monte-Carlo simulations with dynamical fermions, and quenched approximation. The book then tackles weak matrix elements, simulation of heavy quarks, and sphaleron induced baryon number non-conservation. The text reviews quantum gravity and random surfaces, recent analytic progress in finite size effects, and parallel QCD machines. Discussions focus on two-dimensional quantum gravity, signatures of resonance in finite volume, first order transitions, and determination of the running coupling. The publication also ponders on hadronic forces from the lattice, universality of the confinement string in multiple potentials, and confinement and saddle-point configurations. The selection is highly recommended for readers interested in the lattice field theory.
Practical Fourier Analysis for Multigrid Methods
Author: Roman Wienands
Publisher: CRC Press
ISBN: 1420034995
Category : Mathematics
Languages : en
Pages : 235
Book Description
Before applying multigrid methods to a project, mathematicians, scientists, and engineers need to answer questions related to the quality of convergence, whether a development will pay out, whether multigrid will work for a particular application, and what the numerical properties are. Practical Fourier Analysis for Multigrid Methods uses a detaile
Publisher: CRC Press
ISBN: 1420034995
Category : Mathematics
Languages : en
Pages : 235
Book Description
Before applying multigrid methods to a project, mathematicians, scientists, and engineers need to answer questions related to the quality of convergence, whether a development will pay out, whether multigrid will work for a particular application, and what the numerical properties are. Practical Fourier Analysis for Multigrid Methods uses a detaile
Topics in Numerical Analysis
Author: G. Alefeld
Publisher: Springer Science & Business Media
ISBN: 3709162173
Category : Mathematics
Languages : en
Pages : 253
Book Description
This volume contains eighteen papers submitted in celebration of the sixty-fifth birthday of Professor Tetsuro Yamamoto of Ehime University. Professor Yamamoto was born in Tottori, Japan on January 4, 1937. He obtained his B. S. and M. S. in mathematics from Hiroshima University in 1959 and 1961, respec tively. In 1966, he took a lecturer position in the Department of Mathematics, Faculty of General Education, Hiroshima University and obtained his Ph. D. degree from Hiroshima University two years later. In 1969, he moved to the Department of Applied Mathematics, Faculty of Engineering, Ehime University as an associate professor and he has been a full professor of the Department of Mathematics (now Department of Mathematical Sciences), Faculty of Science, since 1975. At the early stage of his study, he was interested in algebraic eigen value problems and linear iterative methods. He published some papers on these topics in high level international journals. After moving to Ehime University, he started his research on Newton's method and Newton-like methods for nonlinear operator equations. He published many papers on error estimates of the methods. He established the remarkable result that all the known error bounds for Newton's method under the Kantorovich assumptions follow from the Newton-Kantorovich theorem, which put a period to the race of finding sharper error bounds for Newton's method.
Publisher: Springer Science & Business Media
ISBN: 3709162173
Category : Mathematics
Languages : en
Pages : 253
Book Description
This volume contains eighteen papers submitted in celebration of the sixty-fifth birthday of Professor Tetsuro Yamamoto of Ehime University. Professor Yamamoto was born in Tottori, Japan on January 4, 1937. He obtained his B. S. and M. S. in mathematics from Hiroshima University in 1959 and 1961, respec tively. In 1966, he took a lecturer position in the Department of Mathematics, Faculty of General Education, Hiroshima University and obtained his Ph. D. degree from Hiroshima University two years later. In 1969, he moved to the Department of Applied Mathematics, Faculty of Engineering, Ehime University as an associate professor and he has been a full professor of the Department of Mathematics (now Department of Mathematical Sciences), Faculty of Science, since 1975. At the early stage of his study, he was interested in algebraic eigen value problems and linear iterative methods. He published some papers on these topics in high level international journals. After moving to Ehime University, he started his research on Newton's method and Newton-like methods for nonlinear operator equations. He published many papers on error estimates of the methods. He established the remarkable result that all the known error bounds for Newton's method under the Kantorovich assumptions follow from the Newton-Kantorovich theorem, which put a period to the race of finding sharper error bounds for Newton's method.