Efficient Analysis, Design and Decoding of Low-density Parity-check Codes [microform]

Efficient Analysis, Design and Decoding of Low-density Parity-check Codes [microform] PDF Author: Masoud Ardakani
Publisher: Library and Archives Canada = Bibliothèque et Archives Canada
ISBN: 9780612943100
Category :
Languages : en
Pages : 308

Get Book Here

Book Description
This dissertation presents new methods for the analysis, design and decoding of low-density parity-check (LDPC) codes. We start by studying the simplest class of decoders: the binary message-passing (BMP) decoders. We show that the optimum BMP decoder must satisfy certain symmetry and isotropy conditions, and prove that Gallager's Algorithm B is the optimum BMP algorithm. We use a generalization of extrinsic information transfer (EXIT) charts to formulate a linear program that leads to the design of highly efficient irregular LDPC codes for the BMP decoder. We extend this approach to the design of irregular LDPC codes for the additive white Gaussian noise channel. We introduce a "semi-Gaussian" approximation that very accurately predicts the behaviour of the decoder and permits code design over a wider range of rates and code parameters than in previous approaches. We then study the EXIT chart properties of the highest rate LDPC code which guarantees a certain convergence behaviour. We also introduce and analyze gear-shift decoding in which the decoder is permitted to select the decoding rule from among a predefined set. We show that this flexibility can give rise to significant reductions in decoding complexity. Finally, we show that binary LDPC codes can be combined with quadrature amplitude modulation to achieve near-capacity performance in a multitone system over frequency selective Gaussian channels.

Efficient Analysis, Design and Decoding of Low-density Parity-check Codes [microform]

Efficient Analysis, Design and Decoding of Low-density Parity-check Codes [microform] PDF Author: Masoud Ardakani
Publisher: Library and Archives Canada = Bibliothèque et Archives Canada
ISBN: 9780612943100
Category :
Languages : en
Pages : 308

Get Book Here

Book Description
This dissertation presents new methods for the analysis, design and decoding of low-density parity-check (LDPC) codes. We start by studying the simplest class of decoders: the binary message-passing (BMP) decoders. We show that the optimum BMP decoder must satisfy certain symmetry and isotropy conditions, and prove that Gallager's Algorithm B is the optimum BMP algorithm. We use a generalization of extrinsic information transfer (EXIT) charts to formulate a linear program that leads to the design of highly efficient irregular LDPC codes for the BMP decoder. We extend this approach to the design of irregular LDPC codes for the additive white Gaussian noise channel. We introduce a "semi-Gaussian" approximation that very accurately predicts the behaviour of the decoder and permits code design over a wider range of rates and code parameters than in previous approaches. We then study the EXIT chart properties of the highest rate LDPC code which guarantees a certain convergence behaviour. We also introduce and analyze gear-shift decoding in which the decoder is permitted to select the decoding rule from among a predefined set. We show that this flexibility can give rise to significant reductions in decoding complexity. Finally, we show that binary LDPC codes can be combined with quadrature amplitude modulation to achieve near-capacity performance in a multitone system over frequency selective Gaussian channels.

Low-density Parity-check Codes with Reduced Decoding Complexity

Low-density Parity-check Codes with Reduced Decoding Complexity PDF Author: Benjamin Smith
Publisher:
ISBN: 9780494273289
Category :
Languages : en
Pages : 156

Get Book Here

Book Description
This thesis presents new methods to design low-density parity-check (LDPC) codes with reduced decoding complexity. An accurate measure of iterative decoding complexity is introduced. In conjunction with extrinsic information transfer (EXIT) chart analysis, an efficient optimization program is developed, for which the complexity measure is the objective function, and its utility is demonstrated by designing LDPC codes with reduced decoding complexity. For long block lengths, codes designed by these methods match the performance of threshold-optimized codes, but reduce the decoding complexity by approximately one-third. The performance of LDPC codes is investigated when the decoder is constrained to perform a sub-optimal decoding algorithm. Due to their practical relevance, the focus is on the design of LDPC codes for quantized min-sum decoders. For such a decoder, codes designed for the sum-product algorithm are sub-optimal, and an alternative design strategy is proposed, resulting in gains of more than 0.5 dB.

Low-density Parity-check Codes for Gilbert-Elliott and Markov-modulated Channels [microform]

Low-density Parity-check Codes for Gilbert-Elliott and Markov-modulated Channels [microform] PDF Author: Andrew William Eckford
Publisher: National Library of Canada = Bibliothèque nationale du Canada
ISBN: 9780612916142
Category :
Languages : en
Pages : 328

Get Book Here

Book Description
The problem of low-density parity-check (LDPC) decoding in channels with memory has been attracting increasing attention in the literature. In this thesis, we use LDPC codes in an estimation-decoding scheme for the Gilbert-Elliott (GE) channel and more general Markov-modulated channels. The major accomplishments of this thesis include both analysis and design components. To analyze our estimation-decoding scheme, we derive density evolution for the GE channel, which has previously been used largely in memoryless channels. Furthermore, we develop techniques that use density evolution results to more efficiently characterize the space of Markov-modulated parameters. We begin by applying a characterization to the GE channel, following which we generalize this characterization into a partial ordering of Markov-modulated channels in terms of probability of symbol error. We also consider the design problem of developing LDPC degree sequences that are optimized for the GE channel. We obtain a novel design tool that approximates density evolution for our estimation-decoding algorithm, and present degree sequences that represent the best known codes in the GE channel. We also present a method of generalizing this tool to Markov-modulated channels, and give some of the first optimized degree sequences ever obtained for these channels.

Efficient Design and Decoding of the Rate-compatible Low-density Parity-check Codes

Efficient Design and Decoding of the Rate-compatible Low-density Parity-check Codes PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
HKUST Call Number: Thesis ECED 2009 WuXX.

Energy-efficient Decoding of Low-density Parity-check Codes

Energy-efficient Decoding of Low-density Parity-check Codes PDF Author: Kevin Cushon
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
"Low-density parity-check (LDPC) codes are a type of error correcting code that are frequently used in high-performance communications systems, due to their ability to approach the theoretical limits of error correction. However, their iterative soft-decision decoding algorithms suffer from high computational complexity, energy consumption, and auxiliary circuit implementation difficulties. It is of particular interest to develop energy-efficient LDPC decoders in order to decrease cost of operation, increase battery life in portable devices, lessen environmental impact, and increase the range of applications for these powerful codes.In this dissertation, we propose four new LDPC decoder designs with the primary goal of improving energy efficiency over previous designs. First, we present a bidirectional interleaver based on transmission gates, which reduces wiring complexity and associated parasitic energy losses. Second, we present an iterative decoder design based on pulse-width modulated min-sum (PWM-MS). We demonstrate that the pulse width message format reduces switching activity, computational complexity, and energy consumption compared to other recent LDPC decoder designs. Third, wepresent decoders based on differential binary (DB) algorithms. We also propose an improved differential binary (IDB) decoding algorithm, which greatly increases throughput and reduces energy consumption compared to recent decoders ofsimilar error correction capability. Finally, we present decoders based on gear-shift algorithms, which use multiple decoding rules to minimize energy consumption. We propose gear-shift pulse-width (GSP) and IDB with GSP (IGSP) algorithms, and demonstrate that they achieve superior energy efficiency without compromising error correction performance." --

Efficient Encoding and Decoding of Low Density Parity Check Codes

Efficient Encoding and Decoding of Low Density Parity Check Codes PDF Author: Hemanth Reddy Chintalapani
Publisher:
ISBN:
Category : Telecommunication
Languages : en
Pages : 48

Get Book Here

Book Description


Design of Rate-compatible Structured Low-density Parity-check Codes

Design of Rate-compatible Structured Low-density Parity-check Codes PDF Author: Jaehong Kim
Publisher:
ISBN:
Category : Algorithms
Languages : en
Pages :

Get Book Here

Book Description
The main objective of our research is to design practical low-density parity-check (LDPC) codes which provide a wide range of code rates in a rate-compatible fashion. To this end, we first propose a rate-compatible puncturing algorithm for LDPC codes at short block lengths (up to several thousand symbols). The proposed algorithm is based on the claim that a punctured LDPC code with a smaller level of recoverability has better performance. The proposed algorithm is verified by comparing performance of intentionally punctured LDPC codes (using the proposed algorithm) with randomly punctured LDPC codes. The intentionally punctured LDPC codes show better bit error rate (BER) performances at practically short block lengths. Even though the proposed puncturing algorithm shows excellent performance, several problems are still remained for our research objective. First, how to design an LDPC code of which structure is well suited for the puncturing algorithm. Second, how to provide a wide range of rates since there is a puncturing limitation with the proposed puncturing algorithm. To attack these problems, we propose a new class of LDPC codes, called efficiently-encodable rate-compatible (E2RC) codes, in which the proposed puncturing algorithm concept is imbedded. The E2RC codes have several strong points. First, the codes can be efficiently encoded. We present low-complexity encoder implementation with shift-register circuits. In addition, we show that a simple erasure decoder can also be used for the linear-time encoding of these codes. Thus, we can share a message-passing decoder for both encoding and decoding in transceiver systems that require an encoder/decoder pair. Second, we show that the non-systematic parts of the parity-check matrix are cycle-free, which ensures good code characteristics. Finally, the E2RC codes having a systematic rate-compatible puncturing structure show better puncturing performance than any other LDPC codes in all ranges of code rates.

Analysis of Finite-length Low-density Parity-check Codes

Analysis of Finite-length Low-density Parity-check Codes PDF Author: Chenying Wang
Publisher:
ISBN:
Category :
Languages : en
Pages : 71

Get Book Here

Book Description


Decoder Architectures and Implementations for Quasi-cyclic Low-density Parity-check Codes

Decoder Architectures and Implementations for Quasi-cyclic Low-density Parity-check Codes PDF Author: Xiaoheng Chen
Publisher:
ISBN: 9781124906669
Category :
Languages : en
Pages :

Get Book Here

Book Description
Since the rediscovery of low-density parity-check (LDPC) codes in the late 1990s, tremendous progress has been made in code construction and design, decoding algorithms, and decoder implementation of these capacity-approaching codes. Recently, LDPC codes are considered for applications such as high-speed satellite and optical communications, the hard disk drives, and high-density flash memory based storage systems, which require that the codes are free of error-floor down to bit error rate (BER) as low as 10−12 to 10−15. FPGAs are usually used to evaluate the error performance of codes, since one can exploit the finite word length and extremely high internal memory bandwidth of an FPGA. Existing FPGA-based LDPC decoders fail to utilize the configurability and read-first mode of embedded memory in the FPGAs, and thus result in limited throughput and codes sizes. Four optimization techniques, i.e., vectorization, folding, message relocation, and circulant permutation matrix (CPM) sharing, are proposed to improve the throughput, scalability, and efficiency of FPGA-based decoders. Also, a semi-automatic CAD tool called QCSYN (Quasi-Cyclic LDPC decoder SYNthesis) is designed to shorten the implementation time of decoders. Using the above techniques, a high-rate (16129,15372) code is shown to have no error-floor down to the BER of 10−14. Also, it is very difficult to construct codes that do not exhibit an error floor down to 10−15 or so. Without detailed knowledge of dominant trapping sets, a backtracking-based reconfigurable decoder is designed to lower the error floor of a family of structurally compatible quasi-cyclic LDPC codes by one to two orders of magnitudes. Hardware reconfigurability is another significant feature of LDPC decoders. A tri-mode decoder for the (4095,3367) Euclidean geometry code is designed to work with three compatible binary message passing decoding algorithms. Note that this code contains 262080 edges (21.3 times of the (2048,1723) 10GBASE-T code) in its Tanner graph and is the largest code ever implemented. Besides, an efficient QC-LDPC Shift Network (QSN) is proposed to reduce the interconnect delay and control logic of circular shift network, a core component in the reconfigurable decoder that supports a family of structurally compatible codes. The interconnect delay and control logic area are reduced by a factor of 2.12 and 8, respectively. Non-binary LDPC codes are effective in combating burst errors. Using the power representation of the elements in the Galois field to organize both intrinsic and extrinsic messages, we present an efficient decoder architecture for non-binary QC-LDPC codes. The proposed decoder is reconfigurable and can be used to decode any code of a given field size. The decoder supports both regular and irregular non-binary QC-LDPC codes. Using a practical metric of throughput per unit area, the proposed implementation outperforms the best implementations published in research literature to date.

Message-passing Schedules for Decoding Low-density Parity-check Codes [microform]

Message-passing Schedules for Decoding Low-density Parity-check Codes [microform] PDF Author: Hua Xiao
Publisher: National Library of Canada = Bibliothèque nationale du Canada
ISBN: 9780612798014
Category : Algorithms
Languages : en
Pages : 174

Get Book Here

Book Description