Author: Konstantin Volkov
Publisher: BoD – Books on Demand
ISBN: 9535104640
Category : Technology & Engineering
Languages : en
Pages : 249
Book Description
A wide range of issues related to analysis of gas turbines and their engineering applications are considered in the book. Analytical and experimental methods are employed to identify failures and quantify operating conditions and efficiency of gas turbines. Gas turbine engine defect diagnostic and condition monitoring systems, operating conditions of open gas turbines, reduction of jet mixing noise, recovery of exhaust heat from gas turbines, appropriate materials and coatings, ultra micro gas turbines and applications of gas turbines are discussed. The open exchange of scientific results and ideas will hopefully lead to improved reliability of gas turbines.
Efficiency, Performance and Robustness of Gas Turbines
Author: Konstantin Volkov
Publisher: BoD – Books on Demand
ISBN: 9535104640
Category : Technology & Engineering
Languages : en
Pages : 249
Book Description
A wide range of issues related to analysis of gas turbines and their engineering applications are considered in the book. Analytical and experimental methods are employed to identify failures and quantify operating conditions and efficiency of gas turbines. Gas turbine engine defect diagnostic and condition monitoring systems, operating conditions of open gas turbines, reduction of jet mixing noise, recovery of exhaust heat from gas turbines, appropriate materials and coatings, ultra micro gas turbines and applications of gas turbines are discussed. The open exchange of scientific results and ideas will hopefully lead to improved reliability of gas turbines.
Publisher: BoD – Books on Demand
ISBN: 9535104640
Category : Technology & Engineering
Languages : en
Pages : 249
Book Description
A wide range of issues related to analysis of gas turbines and their engineering applications are considered in the book. Analytical and experimental methods are employed to identify failures and quantify operating conditions and efficiency of gas turbines. Gas turbine engine defect diagnostic and condition monitoring systems, operating conditions of open gas turbines, reduction of jet mixing noise, recovery of exhaust heat from gas turbines, appropriate materials and coatings, ultra micro gas turbines and applications of gas turbines are discussed. The open exchange of scientific results and ideas will hopefully lead to improved reliability of gas turbines.
Efficiency, Performance and Robustness of Gas Turbines
Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :
Book Description
Publisher:
ISBN:
Category :
Languages : en
Pages :
Book Description
Industrial Gas Turbines
Author: A M Y Razak
Publisher: Elsevier
ISBN: 184569340X
Category : Technology & Engineering
Languages : en
Pages : 625
Book Description
Industrial Gas Turbines: Performance and Operability explains important aspects of gas turbine performance such as performance deterioration, service life and engine emissions. Traditionally, gas turbine performance has been taught from a design perspective with insufficient attention paid to the operational issues of a specific site. Operators are not always sufficiently familiar with engine performance issues to resolve operational problems and optimise performance.Industrial Gas Turbines: Performance and Operability discusses the key factors determining the performance of compressors, turbines, combustion and engine controls. An accompanying engine simulator CD illustrates gas turbine performance from the perspective of the operator, building on the concepts discussed in the text. The simulator is effectively a virtual engine and can be subjected to operating conditions that would be dangerous and damaging to an engine in real-life conditions. It also deals with issues of engine deterioration, emissions and turbine life. The combined use of text and simulators is designed to allow the reader to better understand and optimise gas turbine operation. - Discusses the key factors in determining the perfomance of compressors, turbines, combustion and engine controls - Explains important aspects of gas and turbine perfomance such as service life and engine emissions - Accompanied by CD illustrating gas turbine performance, building on the concepts discussed in the text
Publisher: Elsevier
ISBN: 184569340X
Category : Technology & Engineering
Languages : en
Pages : 625
Book Description
Industrial Gas Turbines: Performance and Operability explains important aspects of gas turbine performance such as performance deterioration, service life and engine emissions. Traditionally, gas turbine performance has been taught from a design perspective with insufficient attention paid to the operational issues of a specific site. Operators are not always sufficiently familiar with engine performance issues to resolve operational problems and optimise performance.Industrial Gas Turbines: Performance and Operability discusses the key factors determining the performance of compressors, turbines, combustion and engine controls. An accompanying engine simulator CD illustrates gas turbine performance from the perspective of the operator, building on the concepts discussed in the text. The simulator is effectively a virtual engine and can be subjected to operating conditions that would be dangerous and damaging to an engine in real-life conditions. It also deals with issues of engine deterioration, emissions and turbine life. The combined use of text and simulators is designed to allow the reader to better understand and optimise gas turbine operation. - Discusses the key factors in determining the perfomance of compressors, turbines, combustion and engine controls - Explains important aspects of gas and turbine perfomance such as service life and engine emissions - Accompanied by CD illustrating gas turbine performance, building on the concepts discussed in the text
Progress in Gas Turbine Performance
Author: Ernesto Benini
Publisher:
ISBN: 9789535163534
Category :
Languages : en
Pages : 270
Book Description
There has been a remarkable difference in the research and development regarding gas turbine technology for transportation and power generation. The former remains substantially florid and unaltered with respect to the past as the superiority of air-breathing engines compared to other technologies is by far immense. On the other hand, the world of gas turbines (GTs) for power generation is indeed characterized by completely different scenarios in so far as new challenges are coming up in the latest energy trends, where both a reduction in the use of carbon-based fuels and the raising up of renewables are becoming more and more important factors. While being considered a key technology for base-load operations for many years, modern stationary gas turbines are in fact facing the challenge to balance electricity from variable renewables with that from flexible conventional power plants. The book intends in fact to provide an updated picture as well as a perspective view of some of the abovementioned issues that characterize GT technology in the two different applications: aircraft propulsion and stationary power generation. Therefore, the target audience for it involves design, analyst, materials and maintenance engineers. Also manufacturers, researchers and scientists will benefit from the timely and accurate information provided in this volume. The book is organized into three main sections including 10 chapters overall: (i) Gas Turbine and Component Performance, (ii) Gas Turbine Combustion and (iii) Fault Detection in Systems and Materials.
Publisher:
ISBN: 9789535163534
Category :
Languages : en
Pages : 270
Book Description
There has been a remarkable difference in the research and development regarding gas turbine technology for transportation and power generation. The former remains substantially florid and unaltered with respect to the past as the superiority of air-breathing engines compared to other technologies is by far immense. On the other hand, the world of gas turbines (GTs) for power generation is indeed characterized by completely different scenarios in so far as new challenges are coming up in the latest energy trends, where both a reduction in the use of carbon-based fuels and the raising up of renewables are becoming more and more important factors. While being considered a key technology for base-load operations for many years, modern stationary gas turbines are in fact facing the challenge to balance electricity from variable renewables with that from flexible conventional power plants. The book intends in fact to provide an updated picture as well as a perspective view of some of the abovementioned issues that characterize GT technology in the two different applications: aircraft propulsion and stationary power generation. Therefore, the target audience for it involves design, analyst, materials and maintenance engineers. Also manufacturers, researchers and scientists will benefit from the timely and accurate information provided in this volume. The book is organized into three main sections including 10 chapters overall: (i) Gas Turbine and Component Performance, (ii) Gas Turbine Combustion and (iii) Fault Detection in Systems and Materials.
Advanced Technologies for Gas Turbines
Author: National Academies of Sciences, Engineering, and Medicine
Publisher: National Academies Press
ISBN: 0309664225
Category : Science
Languages : en
Pages : 137
Book Description
Leadership in gas turbine technologies is of continuing importance as the value of gas turbine production is projected to grow substantially by 2030 and beyond. Power generation, aviation, and the oil and gas industries rely on advanced technologies for gas turbines. Market trends including world demographics, energy security and resilience, decarbonization, and customer profiles are rapidly changing and influencing the future of these industries and gas turbine technologies. Technology trends that define the technological environment in which gas turbine research and development will take place are also changing - including inexpensive, large scale computational capabilities, highly autonomous systems, additive manufacturing, and cybersecurity. It is important to evaluate how these changes influence the gas turbine industry and how to manage these changes moving forward. Advanced Technologies for Gas Turbines identifies high-priority opportunities for improving and creating advanced technologies that can be introduced into the design and manufacture of gas turbines to enhance their performance. The goals of this report are to assess the 2030 gas turbine global landscape via analysis of global leadership, market trends, and technology trends that impact gas turbine applications, develop a prioritization process, define high-priority research goals, identify high-priority research areas and topics to achieve the specified goals, and direct future research. Findings and recommendations from this report are important in guiding research within the gas turbine industry and advancing electrical power generation, commercial and military aviation, and oil and gas production.
Publisher: National Academies Press
ISBN: 0309664225
Category : Science
Languages : en
Pages : 137
Book Description
Leadership in gas turbine technologies is of continuing importance as the value of gas turbine production is projected to grow substantially by 2030 and beyond. Power generation, aviation, and the oil and gas industries rely on advanced technologies for gas turbines. Market trends including world demographics, energy security and resilience, decarbonization, and customer profiles are rapidly changing and influencing the future of these industries and gas turbine technologies. Technology trends that define the technological environment in which gas turbine research and development will take place are also changing - including inexpensive, large scale computational capabilities, highly autonomous systems, additive manufacturing, and cybersecurity. It is important to evaluate how these changes influence the gas turbine industry and how to manage these changes moving forward. Advanced Technologies for Gas Turbines identifies high-priority opportunities for improving and creating advanced technologies that can be introduced into the design and manufacture of gas turbines to enhance their performance. The goals of this report are to assess the 2030 gas turbine global landscape via analysis of global leadership, market trends, and technology trends that impact gas turbine applications, develop a prioritization process, define high-priority research goals, identify high-priority research areas and topics to achieve the specified goals, and direct future research. Findings and recommendations from this report are important in guiding research within the gas turbine industry and advancing electrical power generation, commercial and military aviation, and oil and gas production.
Propulsion and Power
Author: Joachim Kurzke
Publisher: Springer
ISBN: 3319759795
Category : Technology & Engineering
Languages : en
Pages : 766
Book Description
The book is written for engineers and students who wish to address the preliminary design of gas turbine engines, as well as the associated performance calculations, in a practical manner. A basic knowledge of thermodynamics and turbomachinery is a prerequisite for understanding the concepts and ideas described. The book is also intended for teachers as a source of information for lecture materials and exercises for their students. It is extensively illustrated with examples and data from real engine cycles, all of which can be reproduced with GasTurb (TM). It discusses the practical application of thermodynamic, aerodynamic and mechanical principles. The authors describe the theoretical background of the simulation elements and the relevant correlations through which they are applied, however they refrain from detailed scientific derivations.
Publisher: Springer
ISBN: 3319759795
Category : Technology & Engineering
Languages : en
Pages : 766
Book Description
The book is written for engineers and students who wish to address the preliminary design of gas turbine engines, as well as the associated performance calculations, in a practical manner. A basic knowledge of thermodynamics and turbomachinery is a prerequisite for understanding the concepts and ideas described. The book is also intended for teachers as a source of information for lecture materials and exercises for their students. It is extensively illustrated with examples and data from real engine cycles, all of which can be reproduced with GasTurb (TM). It discusses the practical application of thermodynamic, aerodynamic and mechanical principles. The authors describe the theoretical background of the simulation elements and the relevant correlations through which they are applied, however they refrain from detailed scientific derivations.
Gas Turbines for Electric Power Generation
Author: S. Can Gülen
Publisher: Cambridge University Press
ISBN: 1108416659
Category : Business & Economics
Languages : en
Pages : 735
Book Description
Everything you wanted to know about industrial gas turbines for electric power generation in one source with hard-to-find, hands-on technical information.
Publisher: Cambridge University Press
ISBN: 1108416659
Category : Business & Economics
Languages : en
Pages : 735
Book Description
Everything you wanted to know about industrial gas turbines for electric power generation in one source with hard-to-find, hands-on technical information.
Thermal Energy
Author: Yatish T. Shah
Publisher: CRC Press
ISBN: 1315305941
Category : Technology & Engineering
Languages : en
Pages : 889
Book Description
The book details sources of thermal energy, methods of capture, and applications. It describes the basics of thermal energy, including measuring thermal energy, laws of thermodynamics that govern its use and transformation, modes of thermal energy, conventional processes, devices and materials, and the methods by which it is transferred. It covers 8 sources of thermal energy: combustion, fusion (solar) fission (nuclear), geothermal, microwave, plasma, waste heat, and thermal energy storage. In each case, the methods of production and capture and its uses are described in detail. It also discusses novel processes and devices used to improve transfer and transformation processes.
Publisher: CRC Press
ISBN: 1315305941
Category : Technology & Engineering
Languages : en
Pages : 889
Book Description
The book details sources of thermal energy, methods of capture, and applications. It describes the basics of thermal energy, including measuring thermal energy, laws of thermodynamics that govern its use and transformation, modes of thermal energy, conventional processes, devices and materials, and the methods by which it is transferred. It covers 8 sources of thermal energy: combustion, fusion (solar) fission (nuclear), geothermal, microwave, plasma, waste heat, and thermal energy storage. In each case, the methods of production and capture and its uses are described in detail. It also discusses novel processes and devices used to improve transfer and transformation processes.
Efficiency, Performance and Robustness of Gas Turbines
Author: Albert Brose
Publisher:
ISBN: 9781681173078
Category :
Languages : en
Pages : 318
Book Description
Gas turbine is the engine at the heart of the power plant that produces electric current. A gas turbine, also called a combustion turbine, is a type of internal combustion engine. It has an upstream rotating compressor coupled to a downstream turbine, and a combustion chamber in between. The basic operation of the gas turbine is similar to that of the steam power plant except that air is used instead of water. Fresh atmospheric air flows through a compressor that brings it to higher pressure. Energy is then added by spraying fuel into the air and igniting it so the combustion generates a high-temperature flow. This high-temperature high-pressure gas enters a turbine, where it expands down to the exhaust pressure, producing a shaft work output in the process. The turbine shaft work is used to drive the compressor and other devices such as an electric generator that may be coupled to the shaft. A gas turbine convert natural gas or other liquid fuels to mechanical energy. This energy then drives a generator that produces electrical energy. It is electrical energy that moves along power lines to homes and businesses. To generate electricity, the gas turbine heats a mixture of air and fuel at very high temperatures, causing the turbine blades to spin. The spinning turbine drives a generator that converts the energy into electricity. The purpose of the gas turbine determines the design so that the most desirable energy form is maximized. Gas turbines are used to power aircraft, trains, ships, electrical generators, and tanks. This book, Efficiency, Performance and Robustness of Gas Turbines, covers a wide range of issues related to analysis of gas turbines and their engineering applications. Gas turbine engine defect diagnostic and condition monitoring systems, operating conditions of open gas turbines, reduction of jet mixing noise, recovery of exhaust heat from gas turbines, appropriate materials and coatings, ultra micro gas turbines and applications of gas turbines are discussed.
Publisher:
ISBN: 9781681173078
Category :
Languages : en
Pages : 318
Book Description
Gas turbine is the engine at the heart of the power plant that produces electric current. A gas turbine, also called a combustion turbine, is a type of internal combustion engine. It has an upstream rotating compressor coupled to a downstream turbine, and a combustion chamber in between. The basic operation of the gas turbine is similar to that of the steam power plant except that air is used instead of water. Fresh atmospheric air flows through a compressor that brings it to higher pressure. Energy is then added by spraying fuel into the air and igniting it so the combustion generates a high-temperature flow. This high-temperature high-pressure gas enters a turbine, where it expands down to the exhaust pressure, producing a shaft work output in the process. The turbine shaft work is used to drive the compressor and other devices such as an electric generator that may be coupled to the shaft. A gas turbine convert natural gas or other liquid fuels to mechanical energy. This energy then drives a generator that produces electrical energy. It is electrical energy that moves along power lines to homes and businesses. To generate electricity, the gas turbine heats a mixture of air and fuel at very high temperatures, causing the turbine blades to spin. The spinning turbine drives a generator that converts the energy into electricity. The purpose of the gas turbine determines the design so that the most desirable energy form is maximized. Gas turbines are used to power aircraft, trains, ships, electrical generators, and tanks. This book, Efficiency, Performance and Robustness of Gas Turbines, covers a wide range of issues related to analysis of gas turbines and their engineering applications. Gas turbine engine defect diagnostic and condition monitoring systems, operating conditions of open gas turbines, reduction of jet mixing noise, recovery of exhaust heat from gas turbines, appropriate materials and coatings, ultra micro gas turbines and applications of gas turbines are discussed.
Advanced Methods of Solid Oxide Fuel Cell Modeling
Author: Jarosław Milewski
Publisher: Springer Science & Business Media
ISBN: 0857292625
Category : Mathematics
Languages : en
Pages : 228
Book Description
Fuel cells are widely regarded as the future of the power and transportation industries. Intensive research in this area now requires new methods of fuel cell operation modeling and cell design. Typical mathematical models are based on the physical process description of fuel cells and require a detailed knowledge of the microscopic properties that govern both chemical and electrochemical reactions. Advanced Methods of Solid Oxide Fuel Cell Modeling proposes the alternative methodology of generalized artificial neural networks (ANN) solid oxide fuel cell (SOFC) modeling. Advanced Methods of Solid Oxide Fuel Cell Modeling provides a comprehensive description of modern fuel cell theory and a guide to the mathematical modeling of SOFCs, with particular emphasis on the use of ANNs. Up to now, most of the equations involved in SOFC models have required the addition of numerous factors that are difficult to determine. The artificial neural network (ANN) can be applied to simulate an object’s behavior without an algorithmic solution, merely by utilizing available experimental data. The ANN methodology discussed in Advanced Methods of Solid Oxide Fuel Cell Modeling can be used by both researchers and professionals to optimize SOFC design. Readers will have access to detailed material on universal fuel cell modeling and design process optimization, and will also be able to discover comprehensive information on fuel cells and artificial intelligence theory.
Publisher: Springer Science & Business Media
ISBN: 0857292625
Category : Mathematics
Languages : en
Pages : 228
Book Description
Fuel cells are widely regarded as the future of the power and transportation industries. Intensive research in this area now requires new methods of fuel cell operation modeling and cell design. Typical mathematical models are based on the physical process description of fuel cells and require a detailed knowledge of the microscopic properties that govern both chemical and electrochemical reactions. Advanced Methods of Solid Oxide Fuel Cell Modeling proposes the alternative methodology of generalized artificial neural networks (ANN) solid oxide fuel cell (SOFC) modeling. Advanced Methods of Solid Oxide Fuel Cell Modeling provides a comprehensive description of modern fuel cell theory and a guide to the mathematical modeling of SOFCs, with particular emphasis on the use of ANNs. Up to now, most of the equations involved in SOFC models have required the addition of numerous factors that are difficult to determine. The artificial neural network (ANN) can be applied to simulate an object’s behavior without an algorithmic solution, merely by utilizing available experimental data. The ANN methodology discussed in Advanced Methods of Solid Oxide Fuel Cell Modeling can be used by both researchers and professionals to optimize SOFC design. Readers will have access to detailed material on universal fuel cell modeling and design process optimization, and will also be able to discover comprehensive information on fuel cells and artificial intelligence theory.