Effects of Variable Wind Stress on Ocean Heat Content

Effects of Variable Wind Stress on Ocean Heat Content PDF Author: Kelly Klima
Publisher:
ISBN:
Category :
Languages : en
Pages : 86

Get Book Here

Book Description
Ocean heat content change (ocean heat uptake) has an important role in variability of the Earth's heat balance. The understanding of which methods and physical processes control ocean heat uptake needs improvement in order to better understand variability in the Earth's heat balance, improve the simulation of present-day climate, and improve the understanding and projection of future climate. Wind stress can play a strong role in ocean heat uptake on all timescales, and short timescale wind stress effects have not been well studied in the literature. This study for the first time examines short timescale spatial and temporal patterns of global variable wind stress datasets in a coupled atmosphere-ocean climate model. NCEP wind stress dataset was characterized for years 1978 to 2007. NCEP monthly means and monthly standard deviations are of the same magnitude, and strong wind stress events (tropical cyclones) are observed. A variety of metrics cannot reliably identify significant timescales or spatial patterns of the variable wind stress. Model behavior with and without variable wind stress is studied. This study uses the MIT IGSM, a 4°x 11 vertical level zonal atmospheric model coupled at the four hour timestep to a 20x2.50x22 vertical level ocean model with the K profile parameterization. Ocean properties in a no forcing scenario are sensitive to variable wind stress. In a weak forcing scenario (observed forcing over the last century), ocean properties are sensitive to variable wind stress, and internal modes of variability (such as an equatorial Pacific oscillation) are observed. In a global warming scenario (1% CO2 rise per year or a business as usual emissions scenario), the strong forcing overwhelms the more subtle responses due to the differences in variable wind stress forcing. Regardless of forcing, the high frequency variable wind stress (monthly or less) variable wind stresses can force a low frequency response. Hence the major source of annual variability of the MOC in this coarse resolution model is surface wind variability.

Effects of Variable Wind Stress on Ocean Heat Content

Effects of Variable Wind Stress on Ocean Heat Content PDF Author: Kelly Klima
Publisher:
ISBN:
Category :
Languages : en
Pages : 86

Get Book Here

Book Description
Ocean heat content change (ocean heat uptake) has an important role in variability of the Earth's heat balance. The understanding of which methods and physical processes control ocean heat uptake needs improvement in order to better understand variability in the Earth's heat balance, improve the simulation of present-day climate, and improve the understanding and projection of future climate. Wind stress can play a strong role in ocean heat uptake on all timescales, and short timescale wind stress effects have not been well studied in the literature. This study for the first time examines short timescale spatial and temporal patterns of global variable wind stress datasets in a coupled atmosphere-ocean climate model. NCEP wind stress dataset was characterized for years 1978 to 2007. NCEP monthly means and monthly standard deviations are of the same magnitude, and strong wind stress events (tropical cyclones) are observed. A variety of metrics cannot reliably identify significant timescales or spatial patterns of the variable wind stress. Model behavior with and without variable wind stress is studied. This study uses the MIT IGSM, a 4°x 11 vertical level zonal atmospheric model coupled at the four hour timestep to a 20x2.50x22 vertical level ocean model with the K profile parameterization. Ocean properties in a no forcing scenario are sensitive to variable wind stress. In a weak forcing scenario (observed forcing over the last century), ocean properties are sensitive to variable wind stress, and internal modes of variability (such as an equatorial Pacific oscillation) are observed. In a global warming scenario (1% CO2 rise per year or a business as usual emissions scenario), the strong forcing overwhelms the more subtle responses due to the differences in variable wind stress forcing. Regardless of forcing, the high frequency variable wind stress (monthly or less) variable wind stresses can force a low frequency response. Hence the major source of annual variability of the MOC in this coarse resolution model is surface wind variability.

El Niño Southern Oscillation in a Changing Climate

El Niño Southern Oscillation in a Changing Climate PDF Author: Michael J. McPhaden
Publisher: John Wiley & Sons
ISBN: 1119548128
Category : Science
Languages : en
Pages : 528

Get Book Here

Book Description
Comprehensive and up-to-date information on Earth’s most dominant year-to-year climate variation The El Niño Southern Oscillation (ENSO) in the Pacific Ocean has major worldwide social and economic consequences through its global scale effects on atmospheric and oceanic circulation, marine and terrestrial ecosystems, and other natural systems. Ongoing climate change is projected to significantly alter ENSO's dynamics and impacts. El Niño Southern Oscillation in a Changing Climate presents the latest theories, models, and observations, and explores the challenges of forecasting ENSO as the climate continues to change. Volume highlights include: Historical background on ENSO and its societal consequences Review of key El Niño (ENSO warm phase) and La Niña (ENSO cold phase) characteristics Mathematical description of the underlying physical processes that generate ENSO variations Conceptual framework for understanding ENSO changes on decadal and longer time scales, including the response to greenhouse gas forcing ENSO impacts on extreme ocean, weather, and climate events, including tropical cyclones, and how ENSO affects fisheries and the global carbon cycle Advances in modeling, paleo-reconstructions, and operational climate forecasting Future projections of ENSO and its impacts Factors influencing ENSO events, such as inter-basin climate interactions and volcanic eruptions The American Geophysical Union promotes discovery in Earth and space science for the benefit of humanity. Its publications disseminate scientific knowledge and provide resources for researchers, students, and professionals. Find out more about this book from this Q&A with the editors.

Wind Stress Over the Ocean

Wind Stress Over the Ocean PDF Author: Ian S. F. Jones
Publisher: Cambridge University Press
ISBN: 0521662435
Category : Mathematics
Languages : en
Pages : 277

Get Book Here

Book Description
A comprehensive 2001 volume for researchers and graduate students in oceanography, meteorology, fluid dynamics and coastal engineering.

The Interaction of Ocean Waves and Wind

The Interaction of Ocean Waves and Wind PDF Author: Peter Janssen
Publisher: Cambridge University Press
ISBN: 0521465400
Category : Science
Languages : en
Pages : 310

Get Book Here

Book Description
This book was published in 2004. The Interaction of Ocean Waves and Wind describes in detail the two-way interaction between wind and ocean waves and shows how ocean waves affect weather forecasting on timescales of 5 to 90 days. Winds generate ocean waves, but at the same time airflow is modified due to the loss of energy and momentum to the waves; thus, momentum loss from the atmosphere to the ocean depends on the state of the waves. This volume discusses ocean wave evolution according to the energy balance equation. An extensive overview of nonlinear transfer is given, and as a by-product the role of four-wave interactions in the generation of extreme events, such as freak waves, is discussed. Effects on ocean circulation are described. Coupled ocean-wave, atmosphere modelling gives improved weather and wave forecasts. This volume will interest ocean wave modellers, physicists and applied mathematicians, and engineers interested in shipping and coastal protection.

Ice Mechanics for Geophysical and Civil Engineering Applications

Ice Mechanics for Geophysical and Civil Engineering Applications PDF Author: Ryszard Staroszczyk
Publisher: Springer
ISBN: 3030030385
Category : Science
Languages : en
Pages : 344

Get Book Here

Book Description
This book presents the concepts and tools of ice mechanics, together with examples of their application in the fields of glaciology, climate research and civil engineering in cold regions. It starts with an account of the most important physical properties of sea and polar ice treated as an anisotropic polycrystalline material, and reviews relevant field observations and experimental measurements. The book focuses on theoretical descriptions of the material behaviour of ice in different stress, deformation and deformation-rate regimes on spatial scales ranging from single ice crystals, those typical in civil engineering applications, up to scales of thousands of kilometres, characteristic of large, grounded polar ice caps in Antarctica and Greenland. In addition, it offers a range of numerical formulations based on either discrete (finite-element, finite-difference and smoothed particle hydrodynamics) methods or asymptotic expansion methods, which have been used by geophysicists, theoretical glaciologists and civil engineers to simulate the behaviour of ice in a number of problems of importance to glaciology and civil engineering, and discusses the results of these simulations. The book is intended for scientists, engineers and graduate students interested in mathematical and numerical modelling of a wide variety of geophysical and civil engineering problems involving natural ice.

Getting Started with TEOS-10 and the Gibbs Seawater (GSW) Oceanographic Toolbox

Getting Started with TEOS-10 and the Gibbs Seawater (GSW) Oceanographic Toolbox PDF Author: Trevor J. McDougall
Publisher:
ISBN: 9780646556215
Category : Seawater
Languages : en
Pages : 28

Get Book Here

Book Description


Ocean Circulation

Ocean Circulation PDF Author: Rui Xin Huang
Publisher: Cambridge University Press
ISBN: 0521852285
Category : Science
Languages : en
Pages : 807

Get Book Here

Book Description
It provides a concise introduction to the dynamics and thermodynamics of oceanic general circulation.

Interacting Climates of Ocean Basins

Interacting Climates of Ocean Basins PDF Author: Carlos R. Mechoso
Publisher: Cambridge University Press
ISBN: 1108492703
Category : Science
Languages : en
Pages : 359

Get Book Here

Book Description
A comprehensive review of interactions between the climates of different ocean basins and their key contributions to global climate variability and change. Providing essential theory and discussing outstanding examples as well as impacts on monsoons, it a useful resource for graduate students and researchers in the atmospheric and ocean sciences.

Ocean-Atmosphere Interactions

Ocean-Atmosphere Interactions PDF Author: Y. Toba
Publisher: The Rosen Publishing Group
ISBN: 9781402011719
Category : Science
Languages : en
Pages : 336

Get Book Here

Book Description
This book presents an up-to-date analysis of ocean-atmosphere interaction. Well known experts examine diverse subjects such as ocean surface waves, air-sea exchange processes, ocean surface mixed layer, water-mass formation, as well as general circulation of the oceans, El Nino and Southern Oscillation (ENSO), and the deep-ocean circulation. Other areas described are basic dynamics, data analysis techniques, numerical modelling, and remote sensing. This book is primarily aimed at graduate and senior undergraduate courses in the area of ocean-atmosphere research.

Atmospheric and Oceanic Fluid Dynamics

Atmospheric and Oceanic Fluid Dynamics PDF Author: Geoffrey K. Vallis
Publisher: Cambridge University Press
ISBN: 1139459961
Category : Science
Languages : en
Pages : 772

Get Book Here

Book Description
Fluid dynamics is fundamental to our understanding of the atmosphere and oceans. Although many of the same principles of fluid dynamics apply to both the atmosphere and oceans, textbooks tend to concentrate on the atmosphere, the ocean, or the theory of geophysical fluid dynamics (GFD). This textbook provides a comprehensive unified treatment of atmospheric and oceanic fluid dynamics. The book introduces the fundamentals of geophysical fluid dynamics, including rotation and stratification, vorticity and potential vorticity, and scaling and approximations. It discusses baroclinic and barotropic instabilities, wave-mean flow interactions and turbulence, and the general circulation of the atmosphere and ocean. Student problems and exercises are included at the end of each chapter. Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-Scale Circulation will be an invaluable graduate textbook on advanced courses in GFD, meteorology, atmospheric science and oceanography, and an excellent review volume for researchers. Additional resources are available at www.cambridge.org/9780521849692.