Effects of Alternative Instream-flow Criteria and Water-supply Demands on Ground-water Development Options in the Big River Area, Rhode Island

Effects of Alternative Instream-flow Criteria and Water-supply Demands on Ground-water Development Options in the Big River Area, Rhode Island PDF Author: Gregory E. Granato
Publisher:
ISBN:
Category : Government publications
Languages : en
Pages : 124

Get Book Here

Book Description


Scientific Investigations Report

Scientific Investigations Report PDF Author:
Publisher:
ISBN:
Category : Earth sciences
Languages : en
Pages : 302

Get Book Here

Book Description


Groundwater Optimization Handbook

Groundwater Optimization Handbook PDF Author: Richard C. Peralta
Publisher: CRC Press
ISBN: 1439838062
Category : Technology & Engineering
Languages : en
Pages : 523

Get Book Here

Book Description
Existing and impending water shortages argue for improving water quantity and quality management. Groundwater Optimization Handbook: Flow, Contaminant Transport, and Conjunctive Management helps you formulate and solve groundwater optimization problems to ensure sustainable supplies of adequate quality and quantity. It shows you how to more effectively use simulation-optimization (S-O) modeling, an economically valuable groundwater management tool that couples simulation models with mathematical optimization techniques. Written for readers of varying familiarity with groundwater hydrology and mathematical optimization, the handbook approaches complex problems realistically. Its techniques have been applied in many legal settings, with produced strategies providing up to 57% improvement over those developed without S-O modeling. These techniques supply constructible designs, planning and management strategies, and metrics for performance-based contracts. Learn how to: Recognize opportunities for applying S-O models Lead client, agency, and consultant personnel through the strategy design and adaptation process Formulate common situations as clear deterministic/stochastic and single/multiobjective mathematical optimization problems Distinguish between problem nonlinearities resulting from physical system characteristics versus management goals Create an S-O model appropriate for your specific needs or select an existing transferrable model Develop acceptable feasible solutions and compute optimal solutions Quantify tradeoffs between multiple objectives Evaluate and adapt a selected optimal strategy, or use it as a metric for comparison Drawing on the author’s numerous real-world designs and more than 30 years of research, consulting, and teaching experience, this practical handbook supplies design procedures, detailed flowcharts, solved problems, lessons learned, and diverse applications. It guides you through the maze of multiple objectives, constraints, and uncertainty to calculate the best strategies for managing flow, contamination, and conjunctive use of groundwater and surface water. Ancillary materials are available from the Downloads tab on the book page at www.crcpress.com.

Effects of Alternative Instream-flow Criteria and Water-supply Demands on Ground-water Development Options in the Big River Area, Rhode Island

Effects of Alternative Instream-flow Criteria and Water-supply Demands on Ground-water Development Options in the Big River Area, Rhode Island PDF Author: Gregory E. Granato
Publisher:
ISBN:
Category : Groundwater
Languages : en
Pages : 122

Get Book Here

Book Description


Streamflow depletion by wells

Streamflow depletion by wells PDF Author: Paul M. Barlow
Publisher:
ISBN:
Category : Groundwater
Languages : en
Pages : 84

Get Book Here

Book Description


Effects of Alternative Instream-flow Criteria and Water-supply Demands on Ground-water Development Options in the Big River Area, Rhode Island

Effects of Alternative Instream-flow Criteria and Water-supply Demands on Ground-water Development Options in the Big River Area, Rhode Island PDF Author: Gregory E. Granato
Publisher:
ISBN:
Category : Groundwater
Languages : en
Pages : 110

Get Book Here

Book Description


Groundwater Simulation and Management Models for the Upper Klamath Basin, Oregon and California

Groundwater Simulation and Management Models for the Upper Klamath Basin, Oregon and California PDF Author: Marshall W. Gannett
Publisher:
ISBN:
Category : Groundwater
Languages : en
Pages : 0

Get Book Here

Book Description
The upper Klamath Basin encompasses about 8,000 square miles, extending from the Cascade Range east to the Basin and Range geologic province in south-central Oregon and northern California. The geography of the basin is dominated by forested volcanic uplands separated by broad interior basins. Most of the interior basins once held broad shallow lakes and extensive wetlands, but most of these areas have been drained or otherwise modified and are now cultivated. Major parts of the interior basins are managed as wildlife refuges, primarily for migratory waterfowl. The permeable volcanic bedrock of the upper Klamath Basin hosts a substantial regional groundwater system that provides much of the flow to major streams and lakes that, in turn, provide water for wildlife habitat and are the principal source of irrigation water for the basin's agricultural economy. Increased allocation of surface water for endangered species in the past decade has resulted in increased groundwater pumping and growing interest in the use of groundwater for irrigation. The potential effects of increased groundwater pumping on groundwater levels and discharge to springs and streams has caused concern among groundwater users, wildlife and Tribal interests, and State and Federal resource managers. To provide information on the potential impacts of increased groundwater development and to aid in the development of a groundwater management strategy, the U.S. Geological Survey, in collaboration with the Oregon Water Resources Department and the Bureau of Reclamation, has developed a groundwater model that can simulate the response of the hydrologic system to these new stresses. The groundwater model was developed using the U.S. Geological Survey MODFLOW finite-difference modeling code and calibrated using inverse methods to transient conditions from 1989 through 2004 with quarterly stress periods. Groundwater recharge and agricultural and municipal pumping are specified for each stress period. All major streams and most major tributaries for which a substantial part of the flow comes from groundwater discharge are included in the model. Groundwater discharge to agricultural drains, evapotranspiration from aquifers in areas of shallow groundwater, and groundwater flow to and from adjacent basins also are simulated in key areas. The model has the capability to calculate the effects of pumping and other external stresses on groundwater levels, discharge to streams, and other boundary fluxes, such as discharge to drains. Historical data indicate that the groundwater system in the upper Klamath Basin fluctuates in response to decadal climate cycles, with groundwater levels and spring flows rising and declining in response to wet and dry periods. Data also show that groundwater levels fluctuate seasonally and interannually in response to groundwater pumping. The most prominent response is to the marked increase in groundwater pumping starting in 2001. The calibrated model is able to simulate observed decadal-scale climate-driven fluctuations in the groundwater system as well as observed shorter-term pumping-related fluctuations. Example model simulations show that the timing and location of the effects of groundwater pumping vary markedly depending on the pumping location. Pumping from wells close (within a few miles) to groundwater discharge features, such as springs, drains, and certain streams, can affect those features within weeks or months of the onset of pumping, and the impacts can be essentially fully manifested in several years. Simulations indicate that seasonal variations in pumping rates are buffered by the groundwater system, and peak impacts are closer to mean annual pumping rates than to instantaneous rates. Thus, pumping effects are, to a large degree, spread out over the entire year. When pumping locations are distant (more than several miles) from discharge features, the effects take many years or decades to fully impact those features, and much of the pumped water comes from groundwater storage over a broad geographic area even after two decades. Moreover, because the effects are spread out over a broad area, the impacts to individual features are much smaller than in the case of nearby pumping. Simulations show that the discharge features most affected by pumping in the area of the Bureau of Reclamation's Klamath Irrigation Project are agricultural drains, and impacts to other surface-water features are small in comparison. A groundwater management model was developed that uses techniques of constrained optimization along with the groundwater flow model to identify the optimal strategy to meet water user needs while not violating defined constraints on impacts to groundwater levels and streamflows. The coupled groundwater simulation-optimization models were formulated to help identify strategies to meet water demand in the upper Klamath Basin. The models maximize groundwater pumping while simultaneously keeping the detrimental impacts of pumping on groundwater levels and groundwater discharge within prescribed limits. Total groundwater withdrawals were calculated under alternative constraints for drawdown, reductions in groundwater discharge to surface water, and water demand to understand the potential benefits and limitations for groundwater development in the upper Klamath Basin. The simulation-optimization model for the upper Klamath Basin provides an improved understanding of how the groundwater and surface-water system responds to sustained groundwater pumping within the Bureau of Reclamation's Klamath Project. Optimization model results demonstrate that a certain amount of supplemental groundwater pumping can occur without exceeding defined limits on drawdown and stream capture. The results of the different applications of the model demonstrate the importance of identifying constraint limits in order to better define the amount and distribution of groundwater withdrawal that is sustainable.

World Water and Food to 2025

World Water and Food to 2025 PDF Author: Mark W. Rosegrant
Publisher: Intl Food Policy Res Inst
ISBN: 0896296466
Category : Business & Economics
Languages : en
Pages : 36

Get Book Here

Book Description
A thirsty world; Alternative futures for water; Consequences of key policy changes; Implications for the future.

The State Water Plan

The State Water Plan PDF Author: Pennsylvania. Department of Environmental Resources. Bureau of Resources Programming
Publisher:
ISBN:
Category : Water resources development
Languages : en
Pages : 206

Get Book Here

Book Description


Water Resources of Taos County, New Mexico

Water Resources of Taos County, New Mexico PDF Author: Lynn A. Garrabrant
Publisher:
ISBN:
Category : Groundwater
Languages : en
Pages : 98

Get Book Here

Book Description