Effect of Turbulence on Deflagration to Detonation Transition

Effect of Turbulence on Deflagration to Detonation Transition PDF Author: Darren Dale Radford
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description


Major Research Topics in Combustion

Major Research Topics in Combustion PDF Author: M.Y. Hussaini
Publisher: Springer Science & Business Media
ISBN: 1461228840
Category : Science
Languages : en
Pages : 668

Get Book Here

Book Description
The Institute for Computer Applications in Science and Engineer ing (ICASE) and NASA Langley Research Center (LaRC) brought together on October 2-4, 1989 experts in the various areas of com bustion with a view to expose them to some combustion problems of technological interest to LaRC and possibly foster interaction with the academic community in these research areas. The top ics chosen for this purpose were flame structure, flame stability, flame holding/extinction, chemical kinetics, turbulence-kinetics in teraction, transition to detonation, and reacting free shear layers. The lead paper set the stage by discussing the status and issues of supersonic combustion relevant to scramjet engine. Then the ex perts were called upon i) to review the current status of knowledge in the aforementioned ;:I. reas, ii) to focus on how this knowledge can be extended and applied to high-speed combustion, and iii) to suggest future directions of research in these areas. Each topic was then dealt with in a position paper followed by formal discussion papers and a general discussion involving the participants. The position papers discussed the state-of-the-art with an emphasis on key issues that needed to be resolved in the near future. The discussion papers crit ically examined these issues and filled in any lacunae therein. The edited versions of the general discussions in the form of questions from the audience and answers from the speakers are included wher ever possible to give the reader the flavor of the lively interactions that took place.

Compressibility Effect on Turbulent Flames and Detonation Initiation and Propagation

Compressibility Effect on Turbulent Flames and Detonation Initiation and Propagation PDF Author: Jonathan Sosa
Publisher:
ISBN:
Category :
Languages : en
Pages : 117

Get Book Here

Book Description
This work presents the first measurement of turbulent burning velocities of a highly-turbulent compressible standing flame induced by shock-driven turbulence in a Turbulent Shock Tube. High-speed schlieren, chemiluminescence, PIV, and dynamic pressure measurements are made to quantify flame-turbulence interaction for high levels of turbulence at elevated temperatures and pressure. Distributions of turbulent velocities, vorticity and turbulent strain are provided for regions ahead and behind the standing flame. The turbulent flame speed is directly measured for the high-Mach standing turbulent flame. From measurements of the flame turbulent speed and turbulent Mach number, transition into a non-linear compressibility regime at turbulent Mach numbers above 0.4 is confirmed, and a possible mechanism for flame generated turbulence and deflagration-to-detonation transition is established.

Turbulence-compressibility Dynamics of Fast Flames for Turbulence Induced Deflagration-to-detonation

Turbulence-compressibility Dynamics of Fast Flames for Turbulence Induced Deflagration-to-detonation PDF Author: Jessica Chambers
Publisher:
ISBN:
Category :
Languages : en
Pages : 76

Get Book Here

Book Description
One of the fundamental mechanisms for detonation initiation is turbulence induced deflagration-to-detonation transition (tDDT). This research experimentally explores the dynamics of highly turbulent fast flames that are characterized by extremely high turbulent flame speeds, experience increased effects of compressibility, and may develop a runaway acceleration combined with a pressure buildup that leads to tDDT. The flame dynamics and reacting flow field are characterized using simultaneous high-speed particle image velocimetry, OH* chemiluminescence, pressure measurements, and schlieren imaging. We study various regimes of fast flame propagation conditions for runaway acceleration of turbulent fast flames and effects of compressibility on the evolution of these flames. When the local measured turbulent flame speed is found to be greater than the Chapman-Jouguet deflagration speed, the flame is categorized to be at the runaway transition regime that eventually leads to a detonation.

28th International Symposium on Shock Waves

28th International Symposium on Shock Waves PDF Author: Konstantinos Kontis
Publisher: Springer Science & Business Media
ISBN: 3642256880
Category : Science
Languages : en
Pages : 860

Get Book Here

Book Description
The University of Manchester hosted the 28th International Symposium on Shock Waves between 17 and 22 July 2011. The International Symposium on Shock Waves first took place in 1957 in Boston and has since become an internationally acclaimed series of meetings for the wider Shock Wave Community. The ISSW28 focused on the following areas: Blast Waves, Chemically Reacting Flows, Dense Gases and Rarefied Flows, Detonation and Combustion, Diagnostics, Facilities, Flow Visualisation, Hypersonic Flow, Ignition, Impact and Compaction, Multiphase Flow, Nozzle Flow, Numerical Methods, Propulsion, Richtmyer-Meshkov, Shockwave Boundary Layer Interaction, Shock Propagation and Reflection, Shock Vortex Interaction, Shockwave Phenomena and Applications, as well as Medical and Biological Applications. The two Volumes contain the papers presented at the symposium and serve as a reference for the participants of the ISSW 28 and individuals interested in these fields.

Fluidic Jet Turbulence Generators for Deflagration to Detonation Transition in Pulsed Detonation Combustors

Fluidic Jet Turbulence Generators for Deflagration to Detonation Transition in Pulsed Detonation Combustors PDF Author: Jarrett E. Lowe
Publisher:
ISBN:
Category : Cross-flow (Aerodynamics)
Languages : en
Pages : 250

Get Book Here

Book Description
The goal of this study is to establish the dominant flow structure required to effectively accelerate the turbulent deflagration flame front to detonation velocity in the shortest possible distance while using a single Jet in Cross Flow (JICF). Jets in crossflow, depending on orientation and momentum ratio, can induce two types of flow structures that propagate downstream; vortex filaments and turbulent eddies. Vortex flow structures are coherent rotating columns that can persist for a considerable distance before diffusing. Turbulent eddies are characterized as random fluctuations in flow velocity or small pockets of rotation. The test rig used for this study consists of a valveless pulse detonation combustor operating at near-ambient conditions supplying air at a rate of (0.05-0.1)kg/s and equivalence ratios of 1.0 to 1.3 using Ethylene fuel. Experimental studies comprised of four phases of testing : full obstacle configurations, single orifice, fluidic jet, and hybrid. Overall, the initial fluidic tests reveal the primary effect is an increase in peak pressure (13%-120%) and a decrease in the ion detonation time by up to 19% favoring upward facing jets while velocity displayed no discernable change from the baseline. A study was also conducted with physical transition geometry comparing both valve and valveless configurations. Findings indicate frequent obstacles leading the DDT section both improves flame acceleration and mitigate the backflow due to a porous thrust surface with insufficient supply pressures and furthermore verifies excessive obstacles are detrimental towards later flame acceleration and transition to detonation.

Characterization of Fast Flames for Turbulence-induced Deflagration to Detonation Transition

Characterization of Fast Flames for Turbulence-induced Deflagration to Detonation Transition PDF Author: Jessica Marcella Chambers
Publisher:
ISBN:
Category :
Languages : en
Pages : 27

Get Book Here

Book Description
One of the fundamental mechanisms for detonation initiation is turbulence driven deflagration to detonation transition (TDDT). The research experimentally explores the propagation dynamics demonstrated by fast deflagrated flames interacting with highly turbulent reactants. Fast flames produce extremely high turbulent flame speeds values, increased levels of compressibility and develop a runaway mechanism that leads to TDDT. The flame structural dynamics and reacting flow field are characterized using simultaneous high-speed particle image velocimetry, chemiluminescence, and Schlieren measurements. The investigation classifies the fast flame propagation modes at various regimes. The study further examines the conditions for a turbulent fast flame at the boundary of transitioning to quasi-detonation. The evolution of the flame-compressibility interactions for this turbulent fast flame is characterized. The local measured turbulent flame speed is found to be greater than the Chapman–Jouguet deflagration flame speed which categorizes the flame to be at the spontaneous transition regime and within the deflagration-to-detonation transition runaway process.

Flame-generated Turbulence for Flame Acceleration and Detonation Transition

Flame-generated Turbulence for Flame Acceleration and Detonation Transition PDF Author: Rachel Hytovick
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description
Detonations are a supersonic mode of combustion witnessed in a variety of applications, from next-generation propulsion devices to catastrophic explosions and the formation of supernovas. Detonations are typically initiated through the deflagration to detonation transition (DDT), a detailed process where a subsonic flame undergoes rapid acceleration increasing compressibility until a hotspot forms on the flame front inciting a detonation wave to form. Due to the complex nature of the phenomena, DDT is commonly investigated in three stages -- (i) preconditioning, (ii) detonation onset, and (iii) wave propagation and stability. The research presented explores each of these stages individually, with a focus on preconditioning, to further resolve the governing mechanisms needed to initiate and sustain a detonation. More specifically, this work seeks to investigate the flow field and flame characteristics in reactions with increasing compressibility. Additionally, the research examines detonation onset and wave propagation to attain an all-encompassing concept of the DDT process. The work uses simultaneous high-speed diagnostics, consisting of particle image velocimetry (PIV), OH* chemiluminescence, schlieren and pressure measurements, to experimentally examine the preconditioning stage. For detonation onset and propagation, megahertz diagnostics (OH* chemiluminescence and schlieren) are implemented to quantitatively visualize the supersonic event. Through the comprehensive suite of diagnostics, this research deduces the role of turbulence in detonation onset to an ongoing cycle of flame generated compression that amplifies until the hotspot ignites.

Combustion, Flames and Explosions of Gases

Combustion, Flames and Explosions of Gases PDF Author: Bernard Lewis
Publisher: Academic Press
ISBN: 1483258394
Category : Science
Languages : en
Pages : 754

Get Book Here

Book Description
Combustion, Flames, and Explosions of Gases, Second Edition focuses on the processes, methodologies, and reactions involved in combustion phenomena. The publication first offers information on theoretical foundations, reaction between hydrogen and oxygen, and reaction between carbon monoxide and oxygen. Discussions focus on the fundamentals of reaction kinetics, elementary and complex reactions in gases, thermal reaction, and combined hydrogen-carbon monoxide-oxygen reaction. The text then elaborates on the reaction between hydrocarbons and oxygen and combustion waves in laminar flow. The manuscript tackles combustion waves in turbulent flow and air entrainment and burning of jets of fuel gases. Topics include effect of turbulence spectrum and turbulent wrinkling on combustion wave propagation; ignition of high-velocity streams by hot solid bodies; burners with primary air entrainment; and description of jet flames. The book then takes a look at detonation waves in gases; emission spectra, ionization, and electric-field effects in flames; and methods of flame photography and pressure recording. The publication is a valuable reference for readers interested in combustion phenomena.

Compressibility Mechanisms of Turbulent Flames and Detonations

Compressibility Mechanisms of Turbulent Flames and Detonations PDF Author: Hardeo Chin
Publisher:
ISBN:
Category :
Languages : en
Pages : 131

Get Book Here

Book Description
Propulsion systems are influenced by the efficiency of combustion systems. One approach to substantially improve combustion efficiency is through pressure gain combustion or detonation-based engines. Detonations exhibit attractive features such as increased stagnation pressure and rapid heat release; however, their highly unsteady and three-dimensional nature makes them difficult to characterize. In addition, the deflagration state prior to detonation is not well defined experimentally. Detonations can be achieved via the deflagration-to-detonation transition (DDT), where a deflagration that propagates on the order of 1 - 10 m/s is accelerated to a detonation that propagates on the order of 2000 m/s. The DDT process is highly dynamic and can occur through several mechanisms such as the Zeldovich reactivity-gradient mechanism where hot spots are created by Mach stem reflections, localized vorticial explosions, boundary layer effects, or turbulence. This work focuses on transient compressible flame regimes within the turbulent DDT (tDDT) process which causes a flame to undergo various burning modes. These burning modes can be categorized into four regimes: (1) slow deflagrations, (2) fast deflagrations, (3) shock-flame complex, and (4) detonation. To achieve each burning mode, turbulence levels and propagation velocities are tailored using perforated plates and various fuel-oxidizer compositions. The primary goal of this dissertation is to characterize the relationship between the turbulent flame speed (ST) and Chapman-Jouguet (CJ) deflagration speed (SCJ) using high-speed optical diagnostics in a turbulent shock tube facility. This work will: (1) further validate and classify the turbulence-compressibility characteristics associated with fast flames that lead to detonation onset in a highly turbulent environment, (2) quantify local ST for fast flames, and (3) investigate the flow field conditions of flame modes relating to the SCJ criteria, from slow deflagrations to shock-flame complexes.