Author: Volodya A. Harutyunyan
Publisher: Bentham Science Publishers
ISBN: 168108080X
Category : Science
Languages : en
Pages : 252
Book Description
This volume investigates the theory of the effect of static electric fields on one-electron states in. nanocylindrical and nanospherical heterolayers and quantized semiconductor films. Homogeneous external electrostatic field for all these structures has been considered as a "universal" modulating factor. For structures with radial symmetry, a study on the influence of radial static field and the electric field of a charged ring on one-electron states is presented. Chapters focusing on homogeneous field effect on low-dimensional excitonic states in the quantized films and quantum wires - in both wide bandgap and narrowband semiconductors - are also included. Other contents include calculations weak, moderate and strong electric fields, quantum-mechanical approximation and perturbation theory, the quasi-classical approximation (WKB method). Readers will benefit from the varied methodological to the subject which gives them a concrete analytical framework to solve problems related to nanoscale semiconductor design. The reference should prove to be useful to academics and professionals working in semiconductor nanoelectronics research and development.
Effect of Static Electric Fields on The Electronic And Optical Properties of Layered Semiconductor Nanostructures
Author: Volodya A. Harutyunyan
Publisher: Bentham Science Publishers
ISBN: 168108080X
Category : Science
Languages : en
Pages : 252
Book Description
This volume investigates the theory of the effect of static electric fields on one-electron states in. nanocylindrical and nanospherical heterolayers and quantized semiconductor films. Homogeneous external electrostatic field for all these structures has been considered as a "universal" modulating factor. For structures with radial symmetry, a study on the influence of radial static field and the electric field of a charged ring on one-electron states is presented. Chapters focusing on homogeneous field effect on low-dimensional excitonic states in the quantized films and quantum wires - in both wide bandgap and narrowband semiconductors - are also included. Other contents include calculations weak, moderate and strong electric fields, quantum-mechanical approximation and perturbation theory, the quasi-classical approximation (WKB method). Readers will benefit from the varied methodological to the subject which gives them a concrete analytical framework to solve problems related to nanoscale semiconductor design. The reference should prove to be useful to academics and professionals working in semiconductor nanoelectronics research and development.
Publisher: Bentham Science Publishers
ISBN: 168108080X
Category : Science
Languages : en
Pages : 252
Book Description
This volume investigates the theory of the effect of static electric fields on one-electron states in. nanocylindrical and nanospherical heterolayers and quantized semiconductor films. Homogeneous external electrostatic field for all these structures has been considered as a "universal" modulating factor. For structures with radial symmetry, a study on the influence of radial static field and the electric field of a charged ring on one-electron states is presented. Chapters focusing on homogeneous field effect on low-dimensional excitonic states in the quantized films and quantum wires - in both wide bandgap and narrowband semiconductors - are also included. Other contents include calculations weak, moderate and strong electric fields, quantum-mechanical approximation and perturbation theory, the quasi-classical approximation (WKB method). Readers will benefit from the varied methodological to the subject which gives them a concrete analytical framework to solve problems related to nanoscale semiconductor design. The reference should prove to be useful to academics and professionals working in semiconductor nanoelectronics research and development.
Optics and Its Applications
Author: David Blaschke
Publisher: Springer Nature
ISBN: 3031112873
Category : Science
Languages : en
Pages : 225
Book Description
This book features selected articles based on contributions presented at the 9th International Symposium on Optics and Its Applications (OPTICS-2022) in Yerevan-Ashtarak, Armenia. The annual OPTICS symposium brings together renowned experts from all over the world working in the fields of atomic optics, plasmonics, optics of nanostructures, as well as the optics of condensed matter, and provides a perfect setting for their discussions of the most recent developments in this area. The 9th iteration in this series, dedicated to the 80th birthday of Academician Eduard Kazaryan, focuses on topics dealing with the spectroscopy of real and artificial atoms, linear and nonlinear optical characteristics of quantum wells, and two-dimensional materials. The book highlights recent results of few-particle optical characteristics of artificial atoms in the framework of the exactly solvable Moshinsky model, as well as an electro-optical analog of the magneto-optical Faraday effect. In addition, a detailed study of the nucleation process, its characterization, as well as electronic and optical properties of graded composition quantum dots in the Stranski−Krastanov growth mode, is presented.
Publisher: Springer Nature
ISBN: 3031112873
Category : Science
Languages : en
Pages : 225
Book Description
This book features selected articles based on contributions presented at the 9th International Symposium on Optics and Its Applications (OPTICS-2022) in Yerevan-Ashtarak, Armenia. The annual OPTICS symposium brings together renowned experts from all over the world working in the fields of atomic optics, plasmonics, optics of nanostructures, as well as the optics of condensed matter, and provides a perfect setting for their discussions of the most recent developments in this area. The 9th iteration in this series, dedicated to the 80th birthday of Academician Eduard Kazaryan, focuses on topics dealing with the spectroscopy of real and artificial atoms, linear and nonlinear optical characteristics of quantum wells, and two-dimensional materials. The book highlights recent results of few-particle optical characteristics of artificial atoms in the framework of the exactly solvable Moshinsky model, as well as an electro-optical analog of the magneto-optical Faraday effect. In addition, a detailed study of the nucleation process, its characterization, as well as electronic and optical properties of graded composition quantum dots in the Stranski−Krastanov growth mode, is presented.
Second Order Non-linear Optics of Silicon and Silicon Nanostructures
Author: O. A. Aktsipetrov
Publisher: CRC Press
ISBN: 149878593X
Category : Technology & Engineering
Languages : en
Pages : 601
Book Description
The theory and practice of the non-linear optics of silicon are inextricably linked with a variety of areas of solid state physics, particularly semiconductor physics. However, the current literature linking these fields is scattered across various sources and is lacking in depth. Second Order Non-linear Optics of Silicon and Silicon Nanostructures describes the physical properties of silicon as they apply to non-linear optics while also covering details of the physics of semiconductors. The book contains six chapters that focus on: The physical properties and linear optics of silicon Basic theoretical concepts of reflected second harmonics (RSH) The authors’ theory of the generation of RSH at the non-linear medium–linear medium interface An analytical review of work on the non-linear optics of silicon The results of non-linear optical studies of silicon nanostructures A theory of photoinduced electronic processes in semiconductors and their influence on RSH generation The book also includes methodological problems and a significant amount of reference data. It not only reflects the current state of research but also provides a single, thorough source of introductory information for those who are becoming familiar with non-linear optics. Second Order Non-linear Optics of Silicon and Silicon Nanostructures is a valuable contribution to the fields of non-linear optics, semiconductor physics, and microelectronics, as well as a useful resource for a wide range of readers, from undergraduates to researchers.
Publisher: CRC Press
ISBN: 149878593X
Category : Technology & Engineering
Languages : en
Pages : 601
Book Description
The theory and practice of the non-linear optics of silicon are inextricably linked with a variety of areas of solid state physics, particularly semiconductor physics. However, the current literature linking these fields is scattered across various sources and is lacking in depth. Second Order Non-linear Optics of Silicon and Silicon Nanostructures describes the physical properties of silicon as they apply to non-linear optics while also covering details of the physics of semiconductors. The book contains six chapters that focus on: The physical properties and linear optics of silicon Basic theoretical concepts of reflected second harmonics (RSH) The authors’ theory of the generation of RSH at the non-linear medium–linear medium interface An analytical review of work on the non-linear optics of silicon The results of non-linear optical studies of silicon nanostructures A theory of photoinduced electronic processes in semiconductors and their influence on RSH generation The book also includes methodological problems and a significant amount of reference data. It not only reflects the current state of research but also provides a single, thorough source of introductory information for those who are becoming familiar with non-linear optics. Second Order Non-linear Optics of Silicon and Silicon Nanostructures is a valuable contribution to the fields of non-linear optics, semiconductor physics, and microelectronics, as well as a useful resource for a wide range of readers, from undergraduates to researchers.
Handbook of Thin Films, Five-Volume Set
Author: Hari Singh Nalwa
Publisher: Academic Press
ISBN: 0125129084
Category : Science
Languages : en
Pages : 661
Book Description
This five-volume handbook focuses on processing techniques, characterization methods, and physical properties of thin films (thin layers of insulating, conducting, or semiconductor material). The editor has composed five separate, thematic volumes on thin films of metals, semimetals, glasses, ceramics, alloys, organics, diamonds, graphites, porous materials, noncrystalline solids, supramolecules, polymers, copolymers, biopolymers, composites, blends, activated carbons, intermetallics, chalcogenides, dyes, pigments, nanostructured materials, biomaterials, inorganic/polymer composites, organoceramics, metallocenes, disordered systems, liquid crystals, quasicrystals, and layered structures. Thin films is a field of the utmost importance in today's materials science, electrical engineering and applied solid state physics; with both research and industrial applications in microelectronics, computer manufacturing, and physical devices. Advanced, high-performance computers, high-definition TV, digital camcorders, sensitive broadband imaging systems, flat-panel displays, robotic systems, and medical electronics and diagnostics are but a few examples of miniaturized device technologies that depend the utilization of thin film materials. The Handbook of Thin Films Materials is a comprehensive reference focusing on processing techniques, characterization methods, and physical properties of these thin film materials.
Publisher: Academic Press
ISBN: 0125129084
Category : Science
Languages : en
Pages : 661
Book Description
This five-volume handbook focuses on processing techniques, characterization methods, and physical properties of thin films (thin layers of insulating, conducting, or semiconductor material). The editor has composed five separate, thematic volumes on thin films of metals, semimetals, glasses, ceramics, alloys, organics, diamonds, graphites, porous materials, noncrystalline solids, supramolecules, polymers, copolymers, biopolymers, composites, blends, activated carbons, intermetallics, chalcogenides, dyes, pigments, nanostructured materials, biomaterials, inorganic/polymer composites, organoceramics, metallocenes, disordered systems, liquid crystals, quasicrystals, and layered structures. Thin films is a field of the utmost importance in today's materials science, electrical engineering and applied solid state physics; with both research and industrial applications in microelectronics, computer manufacturing, and physical devices. Advanced, high-performance computers, high-definition TV, digital camcorders, sensitive broadband imaging systems, flat-panel displays, robotic systems, and medical electronics and diagnostics are but a few examples of miniaturized device technologies that depend the utilization of thin film materials. The Handbook of Thin Films Materials is a comprehensive reference focusing on processing techniques, characterization methods, and physical properties of these thin film materials.
Semiconductor Nanostructures for Optoelectronic Applications
Author: Todd D. Steiner
Publisher: Artech House
ISBN: 9781580537520
Category : Technology & Engineering
Languages : en
Pages : 438
Book Description
Annotation Tiny structures measurable on the nanometer scale (one-billionth of a meter) are known as nanostructures, and nanotechnology is the emerging application of these nanostructures into useful nanoscale devices. As we enter the 21st century, more and more professional are using nanotechnology to create semiconductors for a variety of applications, including communications, information technology, medical, and transportation devices. Written by today's best researchers of semiconductor nanostructures, this cutting-edge resource provides a snapshot of this exciting and fast-changing field. The book covers the latest advances in nanotechnology and discusses the applications of nanostructures to optoelectronics, photonics, and electronics.
Publisher: Artech House
ISBN: 9781580537520
Category : Technology & Engineering
Languages : en
Pages : 438
Book Description
Annotation Tiny structures measurable on the nanometer scale (one-billionth of a meter) are known as nanostructures, and nanotechnology is the emerging application of these nanostructures into useful nanoscale devices. As we enter the 21st century, more and more professional are using nanotechnology to create semiconductors for a variety of applications, including communications, information technology, medical, and transportation devices. Written by today's best researchers of semiconductor nanostructures, this cutting-edge resource provides a snapshot of this exciting and fast-changing field. The book covers the latest advances in nanotechnology and discusses the applications of nanostructures to optoelectronics, photonics, and electronics.
Handbook of Thin Films
Author: Hari Singh Nalwa
Publisher: Elsevier
ISBN: 0080533248
Category : Technology & Engineering
Languages : en
Pages : 3436
Book Description
This five-volume handbook focuses on processing techniques, characterization methods, and physical properties of thin films (thin layers of insulating, conducting, or semiconductor material). The editor has composed five separate, thematic volumes on thin films of metals, semimetals, glasses, ceramics, alloys, organics, diamonds, graphites, porous materials, noncrystalline solids, supramolecules, polymers, copolymers, biopolymers, composites, blends, activated carbons, intermetallics, chalcogenides, dyes, pigments, nanostructured materials, biomaterials, inorganic/polymer composites, organoceramics, metallocenes, disordered systems, liquid crystals, quasicrystals, and layered structures.Thin films is a field of the utmost importance in today's materials science, electrical engineering and applied solid state physics; with both research and industrial applications in microelectronics, computer manufacturing, and physical devices.Advanced, high-performance computers, high-definition TV, digital camcorders, sensitive broadband imaging systems, flat-panel displays, robotic systems, and medical electronics and diagnostics are but a few examples of miniaturized device technologies that depend the utilization of thin film materials. The Handbook of Thin Films Materials is a comprehensive reference focusing on processing techniques, characterization methods, and physical properties of these thin film materials.
Publisher: Elsevier
ISBN: 0080533248
Category : Technology & Engineering
Languages : en
Pages : 3436
Book Description
This five-volume handbook focuses on processing techniques, characterization methods, and physical properties of thin films (thin layers of insulating, conducting, or semiconductor material). The editor has composed five separate, thematic volumes on thin films of metals, semimetals, glasses, ceramics, alloys, organics, diamonds, graphites, porous materials, noncrystalline solids, supramolecules, polymers, copolymers, biopolymers, composites, blends, activated carbons, intermetallics, chalcogenides, dyes, pigments, nanostructured materials, biomaterials, inorganic/polymer composites, organoceramics, metallocenes, disordered systems, liquid crystals, quasicrystals, and layered structures.Thin films is a field of the utmost importance in today's materials science, electrical engineering and applied solid state physics; with both research and industrial applications in microelectronics, computer manufacturing, and physical devices.Advanced, high-performance computers, high-definition TV, digital camcorders, sensitive broadband imaging systems, flat-panel displays, robotic systems, and medical electronics and diagnostics are but a few examples of miniaturized device technologies that depend the utilization of thin film materials. The Handbook of Thin Films Materials is a comprehensive reference focusing on processing techniques, characterization methods, and physical properties of these thin film materials.
Handbook of Advanced Electronic and Photonic Materials and Devices: Nanostructured materials
Author: Hari Singh Nalwa
Publisher:
ISBN:
Category : Electric conductors
Languages : en
Pages : 472
Book Description
Electronic and photonic materials discussed in this handbook are the key elements of continued scientific and technological advances in the 21st century. The electronic and photonic materials comprising this handbook include semiconductors, superconductors, ferroelectrics, liquid crystals, conducting polymers, organic and superconductors, conductors, nonlinear optical and optoelectronic materials, electrochromic materials, laser materials, photoconductors, photovoltaic and electroluminescent materials, dielectric materials, nanostructured materials, supramolecular and self-asemblies, silicon and glasses, photosynthetic and respiratory proteins, etc, etc. Some of these materials have already been used and will be the most important components of the semiconductor and photonic industries, computers, internet, information processing and storage, telecommunications, satellite communications, integrated circuits, photocopiers, solar cells, batteries, light-emitting diodes, liquid crystal displays, magneto-optic memories, audio and video systems, recordable compact discs, video cameras, X-ray technology, color imaging, printing, flat-panel displays, optical waveguides, cable televisions, computer chips, molecular-sized transistors and switches, as well as other emerging cutting edge technologies. Electronic and photonic materials are expected to grow to a trillion-dollar industry in the new millennium and will be the most dominating forces in the emerging new technologies in the fields of science and engineering. This handbook is a unique source of the in-depth knowledge of synthesis, processing, fabrication, spectroscopy, physical properties and applications of electronic and photonic materials covering everything for today's and developing future technologies. This handbook consists of over one hundred state-of-the-art review chapters written by more than 200 world leading experts from 25 different countries. With more than 23,000 bibliographic citations and several thousands of figures, tables, photographs, chemical structures and equations, this handbook is an invaluable major reference source for scientists and students working in the field of materials science, solid-state physics, chemistry, electrical and optical engineering, polymer science, device engineering and computational engineering, photophysics, data storage and information technology and technocrats, everyone who is involved in science and engineering of electronic and photonic materials. Key Features * This is the first handbook ever published on electronic and photonic materials * 10 volumes summarize the advances in electronic and photonic materials made over past the two decades * This handbook is a unique source of the in-depth knowledge of synthesis, processing, spectroscopy, physical properties and applications of electronic and photonic materials * Over 100 state-of-the-art review chapters written by more than 200 leading experts from 25 different countries * About 25,000 bibliographic citations and several thousand figures, tables, photographs, chemical structures and equations * Easy access to electronic and photonic materials from a single reference * Each chapter is self-contained with cross references * Single reference having all inorganic, organic and biological materials * Witten in very clear and concise fashion for easy understanding of structure property relationships in electronic and photonic materials
Publisher:
ISBN:
Category : Electric conductors
Languages : en
Pages : 472
Book Description
Electronic and photonic materials discussed in this handbook are the key elements of continued scientific and technological advances in the 21st century. The electronic and photonic materials comprising this handbook include semiconductors, superconductors, ferroelectrics, liquid crystals, conducting polymers, organic and superconductors, conductors, nonlinear optical and optoelectronic materials, electrochromic materials, laser materials, photoconductors, photovoltaic and electroluminescent materials, dielectric materials, nanostructured materials, supramolecular and self-asemblies, silicon and glasses, photosynthetic and respiratory proteins, etc, etc. Some of these materials have already been used and will be the most important components of the semiconductor and photonic industries, computers, internet, information processing and storage, telecommunications, satellite communications, integrated circuits, photocopiers, solar cells, batteries, light-emitting diodes, liquid crystal displays, magneto-optic memories, audio and video systems, recordable compact discs, video cameras, X-ray technology, color imaging, printing, flat-panel displays, optical waveguides, cable televisions, computer chips, molecular-sized transistors and switches, as well as other emerging cutting edge technologies. Electronic and photonic materials are expected to grow to a trillion-dollar industry in the new millennium and will be the most dominating forces in the emerging new technologies in the fields of science and engineering. This handbook is a unique source of the in-depth knowledge of synthesis, processing, fabrication, spectroscopy, physical properties and applications of electronic and photonic materials covering everything for today's and developing future technologies. This handbook consists of over one hundred state-of-the-art review chapters written by more than 200 world leading experts from 25 different countries. With more than 23,000 bibliographic citations and several thousands of figures, tables, photographs, chemical structures and equations, this handbook is an invaluable major reference source for scientists and students working in the field of materials science, solid-state physics, chemistry, electrical and optical engineering, polymer science, device engineering and computational engineering, photophysics, data storage and information technology and technocrats, everyone who is involved in science and engineering of electronic and photonic materials. Key Features * This is the first handbook ever published on electronic and photonic materials * 10 volumes summarize the advances in electronic and photonic materials made over past the two decades * This handbook is a unique source of the in-depth knowledge of synthesis, processing, spectroscopy, physical properties and applications of electronic and photonic materials * Over 100 state-of-the-art review chapters written by more than 200 leading experts from 25 different countries * About 25,000 bibliographic citations and several thousand figures, tables, photographs, chemical structures and equations * Easy access to electronic and photonic materials from a single reference * Each chapter is self-contained with cross references * Single reference having all inorganic, organic and biological materials * Witten in very clear and concise fashion for easy understanding of structure property relationships in electronic and photonic materials
Physics Briefs
Author:
Publisher:
ISBN:
Category : Physics
Languages : en
Pages : 1118
Book Description
Publisher:
ISBN:
Category : Physics
Languages : en
Pages : 1118
Book Description
Polarization Effects in Semiconductors
Author: Debdeep Jena
Publisher: Springer Science & Business Media
ISBN: 0387368310
Category : Science
Languages : en
Pages : 523
Book Description
Polarization Effects in Semiconductors: From Ab Initio Theory to Device Applications presents the latest understanding of the solid state physics, electronic implications and practical applications of the unique spontaneous or pyro-electric polarization charge of wurtzite compound semiconductors, and associated piezo-electric effects in strained thin film heterostructures. These heterostructures are used in wide band gap semiconductor based sensors, in addition to various electronic and opto-electronic semiconductor devices. The book covers the ab initio theory of polarization in cubic and hexagonal semiconductors, growth of thin film GaN, GaN/AlGaN GaAlN/ AlGaInN, and other nitrides, and SiC heterostructures. It discusses the effects of spontaneous and piezoelectric polarization on band diagrams and electronic properties of abrupt and compositionally graded heterostructures, electronic characterization of polarization-induced charge distributions by scanning-probe spectroscopies, and gauge factors and strain effects. In addition, polarization in extended defects, piezo-electric strain/charge engineering, and application to device design and processing are covered. The effects of polarization on the fundamental electron transport properties, and on the basic optical transitions are described. The crucial role of polarization in devices such as high electron mobility transistors (HEMTs) and light-emitting diodes (LEDs) is covered. The chapters are authored by professors and researchers in the fields of physics, applied physics and electrical engineering, who worked for 5 years under the "Polarization Effects in Semiconductors" DOD funded Multi Disciplinary University Research Initiative. This book will be of interest to graduate students and researchers working in the field of wide-bandgap semiconductor physics and their device applications. It will also be useful for practicing engineers in the field of wide-bandgap semiconductor device research and development.
Publisher: Springer Science & Business Media
ISBN: 0387368310
Category : Science
Languages : en
Pages : 523
Book Description
Polarization Effects in Semiconductors: From Ab Initio Theory to Device Applications presents the latest understanding of the solid state physics, electronic implications and practical applications of the unique spontaneous or pyro-electric polarization charge of wurtzite compound semiconductors, and associated piezo-electric effects in strained thin film heterostructures. These heterostructures are used in wide band gap semiconductor based sensors, in addition to various electronic and opto-electronic semiconductor devices. The book covers the ab initio theory of polarization in cubic and hexagonal semiconductors, growth of thin film GaN, GaN/AlGaN GaAlN/ AlGaInN, and other nitrides, and SiC heterostructures. It discusses the effects of spontaneous and piezoelectric polarization on band diagrams and electronic properties of abrupt and compositionally graded heterostructures, electronic characterization of polarization-induced charge distributions by scanning-probe spectroscopies, and gauge factors and strain effects. In addition, polarization in extended defects, piezo-electric strain/charge engineering, and application to device design and processing are covered. The effects of polarization on the fundamental electron transport properties, and on the basic optical transitions are described. The crucial role of polarization in devices such as high electron mobility transistors (HEMTs) and light-emitting diodes (LEDs) is covered. The chapters are authored by professors and researchers in the fields of physics, applied physics and electrical engineering, who worked for 5 years under the "Polarization Effects in Semiconductors" DOD funded Multi Disciplinary University Research Initiative. This book will be of interest to graduate students and researchers working in the field of wide-bandgap semiconductor physics and their device applications. It will also be useful for practicing engineers in the field of wide-bandgap semiconductor device research and development.
Scientific and Technical Aerospace Reports
Author:
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 692
Book Description
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 692
Book Description