Author: David F. Hendry
Publisher: Princeton University Press
ISBN: 1400845653
Category : Business & Economics
Languages : en
Pages : 378
Book Description
Econometric Modeling provides a new and stimulating introduction to econometrics, focusing on modeling. The key issue confronting empirical economics is to establish sustainable relationships that are both supported by data and interpretable from economic theory. The unified likelihood-based approach of this book gives students the required statistical foundations of estimation and inference, and leads to a thorough understanding of econometric techniques. David Hendry and Bent Nielsen introduce modeling for a range of situations, including binary data sets, multiple regression, and cointegrated systems. In each setting, a statistical model is constructed to explain the observed variation in the data, with estimation and inference based on the likelihood function. Substantive issues are always addressed, showing how both statistical and economic assumptions can be tested and empirical results interpreted. Important empirical problems such as structural breaks, forecasting, and model selection are covered, and Monte Carlo simulation is explained and applied. Econometric Modeling is a self-contained introduction for advanced undergraduate or graduate students. Throughout, data illustrate and motivate the approach, and are available for computer-based teaching. Technical issues from probability theory and statistical theory are introduced only as needed. Nevertheless, the approach is rigorous, emphasizing the coherent formulation, estimation, and evaluation of econometric models relevant for empirical research.
Econometric Modeling
Author: David F. Hendry
Publisher: Princeton University Press
ISBN: 1400845653
Category : Business & Economics
Languages : en
Pages : 378
Book Description
Econometric Modeling provides a new and stimulating introduction to econometrics, focusing on modeling. The key issue confronting empirical economics is to establish sustainable relationships that are both supported by data and interpretable from economic theory. The unified likelihood-based approach of this book gives students the required statistical foundations of estimation and inference, and leads to a thorough understanding of econometric techniques. David Hendry and Bent Nielsen introduce modeling for a range of situations, including binary data sets, multiple regression, and cointegrated systems. In each setting, a statistical model is constructed to explain the observed variation in the data, with estimation and inference based on the likelihood function. Substantive issues are always addressed, showing how both statistical and economic assumptions can be tested and empirical results interpreted. Important empirical problems such as structural breaks, forecasting, and model selection are covered, and Monte Carlo simulation is explained and applied. Econometric Modeling is a self-contained introduction for advanced undergraduate or graduate students. Throughout, data illustrate and motivate the approach, and are available for computer-based teaching. Technical issues from probability theory and statistical theory are introduced only as needed. Nevertheless, the approach is rigorous, emphasizing the coherent formulation, estimation, and evaluation of econometric models relevant for empirical research.
Publisher: Princeton University Press
ISBN: 1400845653
Category : Business & Economics
Languages : en
Pages : 378
Book Description
Econometric Modeling provides a new and stimulating introduction to econometrics, focusing on modeling. The key issue confronting empirical economics is to establish sustainable relationships that are both supported by data and interpretable from economic theory. The unified likelihood-based approach of this book gives students the required statistical foundations of estimation and inference, and leads to a thorough understanding of econometric techniques. David Hendry and Bent Nielsen introduce modeling for a range of situations, including binary data sets, multiple regression, and cointegrated systems. In each setting, a statistical model is constructed to explain the observed variation in the data, with estimation and inference based on the likelihood function. Substantive issues are always addressed, showing how both statistical and economic assumptions can be tested and empirical results interpreted. Important empirical problems such as structural breaks, forecasting, and model selection are covered, and Monte Carlo simulation is explained and applied. Econometric Modeling is a self-contained introduction for advanced undergraduate or graduate students. Throughout, data illustrate and motivate the approach, and are available for computer-based teaching. Technical issues from probability theory and statistical theory are introduced only as needed. Nevertheless, the approach is rigorous, emphasizing the coherent formulation, estimation, and evaluation of econometric models relevant for empirical research.
Econometric Modelling with Time Series
Author: Vance Martin
Publisher: Cambridge University Press
ISBN: 0521139813
Category : Business & Economics
Languages : en
Pages : 925
Book Description
"Maximum likelihood estimation is a general method for estimating the parameters of econometric models from observed data. The principle of maximum likelihood plays a central role in the exposition of this book, since a number of estimators used in econometrics can be derived within this framework. Examples include ordinary least squares, generalized least squares and full-information maximum likelihood. In deriving the maximum likelihood estimator, a key concept is the joint probability density function (pdf) of the observed random variables, yt. Maximum likelihood estimation requires that the following conditions are satisfied. (1) The form of the joint pdf of yt is known. (2) The specification of the moments of the joint pdf are known. (3) The joint pdf can be evaluated for all values of the parameters, 9. Parts ONE and TWO of this book deal with models in which all these conditions are satisfied. Part THREE investigates models in which these conditions are not satisfied and considers four important cases. First, if the distribution of yt is misspecified, resulting in both conditions 1 and 2 being violated, estimation is by quasi-maximum likelihood (Chapter 9). Second, if condition 1 is not satisfied, a generalized method of moments estimator (Chapter 10) is required. Third, if condition 2 is not satisfied, estimation relies on nonparametric methods (Chapter 11). Fourth, if condition 3 is violated, simulation-based estimation methods are used (Chapter 12). 1.2 Motivating Examples To highlight the role of probability distributions in maximum likelihood estimation, this section emphasizes the link between observed sample data and 4 The Maximum Likelihood Principle the probability distribution from which they are drawn"-- publisher.
Publisher: Cambridge University Press
ISBN: 0521139813
Category : Business & Economics
Languages : en
Pages : 925
Book Description
"Maximum likelihood estimation is a general method for estimating the parameters of econometric models from observed data. The principle of maximum likelihood plays a central role in the exposition of this book, since a number of estimators used in econometrics can be derived within this framework. Examples include ordinary least squares, generalized least squares and full-information maximum likelihood. In deriving the maximum likelihood estimator, a key concept is the joint probability density function (pdf) of the observed random variables, yt. Maximum likelihood estimation requires that the following conditions are satisfied. (1) The form of the joint pdf of yt is known. (2) The specification of the moments of the joint pdf are known. (3) The joint pdf can be evaluated for all values of the parameters, 9. Parts ONE and TWO of this book deal with models in which all these conditions are satisfied. Part THREE investigates models in which these conditions are not satisfied and considers four important cases. First, if the distribution of yt is misspecified, resulting in both conditions 1 and 2 being violated, estimation is by quasi-maximum likelihood (Chapter 9). Second, if condition 1 is not satisfied, a generalized method of moments estimator (Chapter 10) is required. Third, if condition 2 is not satisfied, estimation relies on nonparametric methods (Chapter 11). Fourth, if condition 3 is violated, simulation-based estimation methods are used (Chapter 12). 1.2 Motivating Examples To highlight the role of probability distributions in maximum likelihood estimation, this section emphasizes the link between observed sample data and 4 The Maximum Likelihood Principle the probability distribution from which they are drawn"-- publisher.
Structural Econometric Models
Author: Eugene Choo
Publisher: Emerald Group Publishing
ISBN: 1783500530
Category : Business & Economics
Languages : en
Pages : 447
Book Description
This volume focuses on recent developments in the use of structural econometric models in empirical economics. The first part looks at recent developments in the estimation of dynamic discrete choice models. The second part looks at recent advances in the area empirical matching models.
Publisher: Emerald Group Publishing
ISBN: 1783500530
Category : Business & Economics
Languages : en
Pages : 447
Book Description
This volume focuses on recent developments in the use of structural econometric models in empirical economics. The first part looks at recent developments in the estimation of dynamic discrete choice models. The second part looks at recent advances in the area empirical matching models.
Econometric Model Selection
Author: Antonio Aznar Grasa
Publisher: Springer Science & Business Media
ISBN: 9401713588
Category : Business & Economics
Languages : en
Pages : 265
Book Description
This book proposes a new methodology for the selection of one (model) from among a set of alternative econometric models. Let us recall that a model is an abstract representation of reality which brings out what is relevant to a particular economic issue. An econometric model is also an analytical characterization of the joint probability distribution of some random variables of interest, which yields some information on how the actual economy works. This information will be useful only if it is accurate and precise; that is, the information must be far from ambiguous and close to what we observe in the real world Thus, model selection should be performed on the basis of statistics which summarize the degree of accuracy and precision of each model. A model is accurate if it predicts right; it is precise if it produces tight confidence intervals. A first general approach to model selection includes those procedures based on both characteristics, precision and accuracy. A particularly interesting example of this approach is that of Hildebrand, Laing and Rosenthal (1980). See also Hendry and Richard (1982). A second general approach includes those procedures that use only one of the two dimensions to discriminate among models. In general, most of the tests we are going to examine correspond to this category.
Publisher: Springer Science & Business Media
ISBN: 9401713588
Category : Business & Economics
Languages : en
Pages : 265
Book Description
This book proposes a new methodology for the selection of one (model) from among a set of alternative econometric models. Let us recall that a model is an abstract representation of reality which brings out what is relevant to a particular economic issue. An econometric model is also an analytical characterization of the joint probability distribution of some random variables of interest, which yields some information on how the actual economy works. This information will be useful only if it is accurate and precise; that is, the information must be far from ambiguous and close to what we observe in the real world Thus, model selection should be performed on the basis of statistics which summarize the degree of accuracy and precision of each model. A model is accurate if it predicts right; it is precise if it produces tight confidence intervals. A first general approach to model selection includes those procedures based on both characteristics, precision and accuracy. A particularly interesting example of this approach is that of Hildebrand, Laing and Rosenthal (1980). See also Hendry and Richard (1982). A second general approach includes those procedures that use only one of the two dimensions to discriminate among models. In general, most of the tests we are going to examine correspond to this category.
Complete and Incomplete Econometric Models
Author: John Geweke
Publisher: Princeton University Press
ISBN: 1400835240
Category : Business & Economics
Languages : en
Pages : 176
Book Description
Econometric models are widely used in the creation and evaluation of economic policy in the public and private sectors. But these models are useful only if they adequately account for the phenomena in question, and they can be quite misleading if they do not. In response, econometricians have developed tests and other checks for model adequacy. All of these methods, however, take as given the specification of the model to be tested. In this book, John Geweke addresses the critical earlier stage of model development, the point at which potential models are inherently incomplete. Summarizing and extending recent advances in Bayesian econometrics, Geweke shows how simple modern simulation methods can complement the creative process of model formulation. These methods, which are accessible to economics PhD students as well as to practicing applied econometricians, streamline the processes of model development and specification checking. Complete with illustrations from a wide variety of applications, this is an important contribution to econometrics that will interest economists and PhD students alike.
Publisher: Princeton University Press
ISBN: 1400835240
Category : Business & Economics
Languages : en
Pages : 176
Book Description
Econometric models are widely used in the creation and evaluation of economic policy in the public and private sectors. But these models are useful only if they adequately account for the phenomena in question, and they can be quite misleading if they do not. In response, econometricians have developed tests and other checks for model adequacy. All of these methods, however, take as given the specification of the model to be tested. In this book, John Geweke addresses the critical earlier stage of model development, the point at which potential models are inherently incomplete. Summarizing and extending recent advances in Bayesian econometrics, Geweke shows how simple modern simulation methods can complement the creative process of model formulation. These methods, which are accessible to economics PhD students as well as to practicing applied econometricians, streamline the processes of model development and specification checking. Complete with illustrations from a wide variety of applications, this is an important contribution to econometrics that will interest economists and PhD students alike.
Applied Econometrics with R
Author: Christian Kleiber
Publisher: Springer Science & Business Media
ISBN: 0387773185
Category : Business & Economics
Languages : en
Pages : 229
Book Description
R is a language and environment for data analysis and graphics. It may be considered an implementation of S, an award-winning language initially - veloped at Bell Laboratories since the late 1970s. The R project was initiated by Robert Gentleman and Ross Ihaka at the University of Auckland, New Zealand, in the early 1990s, and has been developed by an international team since mid-1997. Historically, econometricians have favored other computing environments, some of which have fallen by the wayside, and also a variety of packages with canned routines. We believe that R has great potential in econometrics, both for research and for teaching. There are at least three reasons for this: (1) R is mostly platform independent and runs on Microsoft Windows, the Mac family of operating systems, and various ?avors of Unix/Linux, and also on some more exotic platforms. (2) R is free software that can be downloaded and installed at no cost from a family of mirror sites around the globe, the Comprehensive R Archive Network (CRAN); hence students can easily install it on their own machines. (3) R is open-source software, so that the full source code is available and can be inspected to understand what it really does, learn from it, and modify and extend it. We also like to think that platform independence and the open-source philosophy make R an ideal environment for reproducible econometric research.
Publisher: Springer Science & Business Media
ISBN: 0387773185
Category : Business & Economics
Languages : en
Pages : 229
Book Description
R is a language and environment for data analysis and graphics. It may be considered an implementation of S, an award-winning language initially - veloped at Bell Laboratories since the late 1970s. The R project was initiated by Robert Gentleman and Ross Ihaka at the University of Auckland, New Zealand, in the early 1990s, and has been developed by an international team since mid-1997. Historically, econometricians have favored other computing environments, some of which have fallen by the wayside, and also a variety of packages with canned routines. We believe that R has great potential in econometrics, both for research and for teaching. There are at least three reasons for this: (1) R is mostly platform independent and runs on Microsoft Windows, the Mac family of operating systems, and various ?avors of Unix/Linux, and also on some more exotic platforms. (2) R is free software that can be downloaded and installed at no cost from a family of mirror sites around the globe, the Comprehensive R Archive Network (CRAN); hence students can easily install it on their own machines. (3) R is open-source software, so that the full source code is available and can be inspected to understand what it really does, learn from it, and modify and extend it. We also like to think that platform independence and the open-source philosophy make R an ideal environment for reproducible econometric research.
Evaluation of Econometric Models
Author: Jan Kmenta
Publisher: Academic Press
ISBN: 1483267342
Category : Business & Economics
Languages : en
Pages : 425
Book Description
Evaluation of Econometric Models presents approaches to assessing and enhancing the progress of applied economic research. This book discusses the problems and issues in evaluating econometric models, use of exploratory methods in economic analysis, and model construction and evaluation when theoretical knowledge is scarce. The data analysis by partial least squares, prediction analysis of economic models, and aggregation and disaggregation of nonlinear equations are also elaborated. This text likewise covers the comparison of econometric models by optimal control techniques, role of time series analysis in econometric model evaluation, and hypothesis testing in spectral regression. Other topics include the relevance of laboratory experiments to testing resource allocation theory and token economy and animal models for the experimental analysis of economic behavior. This publication is intended for students and researchers interested in evaluating econometric models.
Publisher: Academic Press
ISBN: 1483267342
Category : Business & Economics
Languages : en
Pages : 425
Book Description
Evaluation of Econometric Models presents approaches to assessing and enhancing the progress of applied economic research. This book discusses the problems and issues in evaluating econometric models, use of exploratory methods in economic analysis, and model construction and evaluation when theoretical knowledge is scarce. The data analysis by partial least squares, prediction analysis of economic models, and aggregation and disaggregation of nonlinear equations are also elaborated. This text likewise covers the comparison of econometric models by optimal control techniques, role of time series analysis in econometric model evaluation, and hypothesis testing in spectral regression. Other topics include the relevance of laboratory experiments to testing resource allocation theory and token economy and animal models for the experimental analysis of economic behavior. This publication is intended for students and researchers interested in evaluating econometric models.
Econometric Modelling of World Shipping
Author: M. Beenstock
Publisher: Springer Science & Business Media
ISBN: 9780412367205
Category : Business & Economics
Languages : en
Pages : 274
Book Description
Econometric Modelling of World Shipping describes an economic model that may be used to forecast world shipping markets. A unique feature of the model is that it relates to both sectors of world shipping, the dry cargo sector and the tanker sector. This is the first time that a model of this type has been published. This book also breaks new ground in explaining the behaviour of vessel prices, both new and secondhand.
Publisher: Springer Science & Business Media
ISBN: 9780412367205
Category : Business & Economics
Languages : en
Pages : 274
Book Description
Econometric Modelling of World Shipping describes an economic model that may be used to forecast world shipping markets. A unique feature of the model is that it relates to both sectors of world shipping, the dry cargo sector and the tanker sector. This is the first time that a model of this type has been published. This book also breaks new ground in explaining the behaviour of vessel prices, both new and secondhand.
Economic Modeling and Inference
Author: Bent Jesper Christensen
Publisher: Princeton University Press
ISBN: 9780691120591
Category : Business & Economics
Languages : en
Pages : 508
Book Description
Economic Modeling and Inference takes econometrics to a new level by demonstrating how to combine modern economic theory with the latest statistical inference methods to get the most out of economic data. This graduate-level textbook draws applications from both microeconomics and macroeconomics, paying special attention to financial and labor economics, with an emphasis throughout on what observations can tell us about stochastic dynamic models of rational optimizing behavior and equilibrium. Bent Jesper Christensen and Nicholas Kiefer show how parameters often thought estimable in applications are not identified even in simple dynamic programming models, and they investigate the roles of extensions, including measurement error, imperfect control, and random utility shocks for inference. When all implications of optimization and equilibrium are imposed in the empirical procedures, the resulting estimation problems are often nonstandard, with the estimators exhibiting nonregular asymptotic behavior such as short-ranked covariance, superconsistency, and non-Gaussianity. Christensen and Kiefer explore these properties in detail, covering areas including job search models of the labor market, asset pricing, option pricing, marketing, and retirement planning. Ideal for researchers and practitioners as well as students, Economic Modeling and Inference uses real-world data to illustrate how to derive the best results using a combination of theory and cutting-edge econometric techniques. Covers identification and estimation of dynamic programming models Treats sources of error--measurement error, random utility, and imperfect control Features financial applications including asset pricing, option pricing, and optimal hedging Describes labor applications including job search, equilibrium search, and retirement Illustrates the wide applicability of the approach using micro, macro, and marketing examples
Publisher: Princeton University Press
ISBN: 9780691120591
Category : Business & Economics
Languages : en
Pages : 508
Book Description
Economic Modeling and Inference takes econometrics to a new level by demonstrating how to combine modern economic theory with the latest statistical inference methods to get the most out of economic data. This graduate-level textbook draws applications from both microeconomics and macroeconomics, paying special attention to financial and labor economics, with an emphasis throughout on what observations can tell us about stochastic dynamic models of rational optimizing behavior and equilibrium. Bent Jesper Christensen and Nicholas Kiefer show how parameters often thought estimable in applications are not identified even in simple dynamic programming models, and they investigate the roles of extensions, including measurement error, imperfect control, and random utility shocks for inference. When all implications of optimization and equilibrium are imposed in the empirical procedures, the resulting estimation problems are often nonstandard, with the estimators exhibiting nonregular asymptotic behavior such as short-ranked covariance, superconsistency, and non-Gaussianity. Christensen and Kiefer explore these properties in detail, covering areas including job search models of the labor market, asset pricing, option pricing, marketing, and retirement planning. Ideal for researchers and practitioners as well as students, Economic Modeling and Inference uses real-world data to illustrate how to derive the best results using a combination of theory and cutting-edge econometric techniques. Covers identification and estimation of dynamic programming models Treats sources of error--measurement error, random utility, and imperfect control Features financial applications including asset pricing, option pricing, and optimal hedging Describes labor applications including job search, equilibrium search, and retirement Illustrates the wide applicability of the approach using micro, macro, and marketing examples
Financial Econometric Modeling
Author: Stan Hurn
Publisher: Oxford University Press, USA
ISBN: 9780190857066
Category : Finance
Languages : en
Pages :
Book Description
"An introduction to the field of financial econometrics, focusing on providing an introduction for undergraduate and postgraduate students whose math skills may not be at the most advanced level, but who need this material to pursue careers in research and the financial industry"--
Publisher: Oxford University Press, USA
ISBN: 9780190857066
Category : Finance
Languages : en
Pages :
Book Description
"An introduction to the field of financial econometrics, focusing on providing an introduction for undergraduate and postgraduate students whose math skills may not be at the most advanced level, but who need this material to pursue careers in research and the financial industry"--