Earthquake-Resistant Design with Rubber

Earthquake-Resistant Design with Rubber PDF Author: James M. Kelly
Publisher: Springer Science & Business Media
ISBN: 1447109716
Category : Technology & Engineering
Languages : en
Pages : 246

Get Book

Book Description
Base isolation technology offers a cost-effective and reliable strategy for mitigating seismic damage to structures. The effectiveness of this new technology has been demonstrated not only in laboratory research, but also in the actual response of base-isolated buildings during earthquakes. Increasingly, new and existing buildings in earthquake-prone regions throughout the world are making use of this innovative strategy. In this expanded and updated edition, the design methods and guidelines associated with seismic isolation are detailed. The main focus of the book is on isolation systems that use a damped natural rubber. Topics covered include coupled lateral-torsional response, the behavior of multilayer bearings under compression and bending, and the buckling behavior of elastomeric bearings. Also featured is a section covering the recent changes in building code requirements.

Earthquake-Resistant Design with Rubber

Earthquake-Resistant Design with Rubber PDF Author: James M. Kelly
Publisher: Springer Science & Business Media
ISBN: 1447109716
Category : Technology & Engineering
Languages : en
Pages : 246

Get Book

Book Description
Base isolation technology offers a cost-effective and reliable strategy for mitigating seismic damage to structures. The effectiveness of this new technology has been demonstrated not only in laboratory research, but also in the actual response of base-isolated buildings during earthquakes. Increasingly, new and existing buildings in earthquake-prone regions throughout the world are making use of this innovative strategy. In this expanded and updated edition, the design methods and guidelines associated with seismic isolation are detailed. The main focus of the book is on isolation systems that use a damped natural rubber. Topics covered include coupled lateral-torsional response, the behavior of multilayer bearings under compression and bending, and the buckling behavior of elastomeric bearings. Also featured is a section covering the recent changes in building code requirements.

Earthquake-Resistant Design with Rubber

Earthquake-Resistant Design with Rubber PDF Author: James M. Kelly
Publisher: Springer Science & Business Media
ISBN: 1447133595
Category : Technology & Engineering
Languages : en
Pages : 134

Get Book

Book Description
My involvement in the use of natural rubber as a method for the protec 1976. At that time, tion of buildings against earthquake attack began in I was working on the development of energy-dissipating devices for the same purpose and had developed and tested a device that was even tually used in a stepping-bridge structure, this being a form of partial isolation. It became clear to me that in order to use these energy devices for the earthquake protection of buildings, it would be best to combine them with an isolation system which would give them the large displace ments needed to develop sufficient hysteresis. At this appropriate point in time, I was approached by Dr. C. J. Derham, then of the Malaysian Rubber Producers' Research Association (MRPRA), who asked if I was interested in looking at the possibility of conducting shaking table tests at the Earthquake Simulator Laboratory to see to what extent natural rubber bearings could be used to protect buildings from earthquakes. Very soon after this meeting, we were able to do such a test using a 20-ton model and hand-made isolators. The eady tests were very promising. Accordingly, a further set of tests was done with a more realistic five storey model weighing 40 tons with bearings that were commercially made. In both of the test series, the isolators were used both alone and with a number of different types of energy-dissipating devices to en hance damping.

Mechanics of Rubber Bearings for Seismic and Vibration Isolation

Mechanics of Rubber Bearings for Seismic and Vibration Isolation PDF Author: James M. Kelly
Publisher: John Wiley & Sons
ISBN: 1119972809
Category : Technology & Engineering
Languages : en
Pages : 217

Get Book

Book Description
Widely used in civil, mechanical and automotive engineering since the early 1980s, multilayer rubber bearings have been used as seismic isolation devices for buildings in highly seismic areas in many countries. Their appeal in these applications comes from their ability to provide a component with high stiffness in one direction with high flexibility in one or more orthogonal directions. This combination of vertical stiffness with horizontal flexibility, achieved by reinforcing the rubber by thin steel shims perpendicular to the vertical load, enables them to be used as seismic and vibration isolators for machinery, buildings and bridges. Mechanics of Rubber Bearings for Seismic and Vibration Isolation collates the most important information on the mechanics of multilayer rubber bearings. It explores a unique and comprehensive combination of relevant topics, covering all prerequisite fundamental theory and providing a number of closed-form solutions to various boundary value problems as well as a comprehensive historical overview on the use of isolation. Many of the results presented in the book are new and are essential for a proper understanding of the behavior of these bearings and for the design and analysis of vibration or seismic isolation systems. The advantages afforded by adopting these natural rubber systems is clearly explained to designers and users of this technology, bringing into focus the design and specification of bearings for buildings, bridges and industrial structures. This comprehensive book: includes state of the art, as yet unpublished research along with all required fundamental concepts; is authored by world-leading experts with over 40 years of combined experience on seismic isolation and the behavior of multilayer rubber bearings; is accompanied by a website at www.wiley.com/go/kelly The concise approach of Mechanics of Rubber Bearings for Seismic and Vibration Isolation forms an invaluable resource for graduate students and researchers/practitioners in structural and mechanical engineering departments, in particular those working in seismic and vibration isolation.

Earthquake Resistant Design of Buildings

Earthquake Resistant Design of Buildings PDF Author: Muhammad Hadi
Publisher: CRC Press
ISBN: 1351200852
Category : Science
Languages : en
Pages : 353

Get Book

Book Description
Introducing important concepts in the study of earthquakes related to retrofitting of structures to be made earthquake resistant. The book investigates the pounding effects on base-isolated buildings, the soil-structure-interaction effects on adjacent buildings due to the impact, the seismic protection of adjacent buildings and the mitigation of earthquakeinduced vibrations of two adjacent structures. These concepts call for a new understanding of controlled systems with passive-active dampers and semi-active dampers. The passive control strategy of coupled buildings is investigated for seismic protection in comparison to active and semi-active control strategies.

Earthquake Resistant Design of Structures

Earthquake Resistant Design of Structures PDF Author: Shashikant K. Duggal
Publisher: OUP India
ISBN: 9780198083528
Category : Technology & Engineering
Languages : en
Pages : 0

Get Book

Book Description
Earthquake-resistant Design of Structures 2e is designed for undergraduate students of civil engineering.

EARTHQUAKE RESISTANT DESIGN OF STRUCTURES

EARTHQUAKE RESISTANT DESIGN OF STRUCTURES PDF Author: PANKAJ AGRAWAL
Publisher: PHI Learning Pvt. Ltd.
ISBN: 9788120328921
Category : Technology & Engineering
Languages : en
Pages : 666

Get Book

Book Description
This comprehensive and well-organized book presents the concepts and principles of earthquake resistant design of structures in an easy-to-read style. The use of these principles helps in the implementation of seismic design practice. The book adopts a step-by-step approach, starting from the fundamentals of structural dynamics to application of seismic codes in analysis and design of structures. The text also focusses on seismic evaluation and retrofitting of reinforced concrete and masonry buildings. The text has been enriched with a large number of diagrams and solved problems to reinforce the understanding of the concepts. Intended mainly as a text for undergraduate and postgraduate students of civil engineering, this text would also be of considerable benefit to practising engineers, architects, field engineers and teachers in the field of earthquake resistant design of structures.

Earthquake Resistant Buildings

Earthquake Resistant Buildings PDF Author: M.Y.H. Bangash
Publisher: Springer Science & Business Media
ISBN: 3540938184
Category : Technology & Engineering
Languages : en
Pages : 730

Get Book

Book Description
This concise work provides a general introduction to the design of buildings which must be resistant to the effect of earthquakes. A major part of this design involves the building structure which has a primary role in preventing serious damage or structural collapse. Much of the material presented in this book examines building structures. Due to the recent discovery of vertical components, it examines not only the resistance to lateral forces but also analyses the disastrous influence of vertical components. The work is written for Practicing Civil, Structural, and Mechanical Engineers, Seismologists and Geoscientists. It serves as a knowledge source for graduate students and their instructors.

Earthquake Resistant Design

Earthquake Resistant Design PDF Author: D. J. Dowrick
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book

Book Description


Earthquake Engineering for Structural Design

Earthquake Engineering for Structural Design PDF Author: W.F. Chen
Publisher: CRC Press
ISBN: 1420037145
Category : Technology & Engineering
Languages : en
Pages : 264

Get Book

Book Description
Many important advances in designing earthquake-resistant structures have occurred over the last several years. Civil engineers need an authoritative source of information that reflects the issues that are unique to the field. Comprising chapters selected from the second edition of the best-selling Handbook of Structural Engineering, Earthquake Eng

Structural Dynamics in Earthquake and Blast Resistant Design

Structural Dynamics in Earthquake and Blast Resistant Design PDF Author: BK Raghu Prasad
Publisher: CRC Press
ISBN: 1351250507
Category : Technology & Engineering
Languages : en
Pages : 354

Get Book

Book Description
Focusing on the fundamentals of structural dynamics required for earthquake blast resistant design, Structural Dynamics in Earthquake and Blast Resistant Design initiates a new approach of blending a little theory with a little practical design in order to bridge this unfriendly gap, thus making the book more structural engineer-friendly. This is attempted by introducing the equations of motion followed by free and forced vibrations of SDF and MDF systems, D’Alembert’s principle, Duhammel’s integral, relevant impulse, pulse and sinusoidal inputs, and, most importantly, support motion and triangular pulse input required in earthquake and blast resistant designs, respectively. Responses of multistorey buildings subjected to earthquake ground motion by a well-known mode superposition technique are explained. Examples of real-size structures as they are being designed and constructed using the popular ETABS and STAAD are shown. Problems encountered in such designs while following the relevant codes of practice like IS 1893 2016 due to architectural constraints are highlighted. A very difficult constraint is in avoiding torsional modes in fundamental and first three modes, the inability to get enough mass participation, and several others. In blast resistant design the constraint is to model the blast effects on basement storeys (below ground level). The problem is in obtaining the attenuation due to the soil. Examples of inelastic hysteretic systems where top soft storey plays an important role in expending the input energy, provided it is not below a stiffer storey (as also required by IS 1893 2016), and inelastic torsional response of structures asymmetric in plan are illustrated in great detail. In both cases the concept of ductility is explained in detail. Results of response spectrum analyses of tall buildings asymmetric in plan constructed in Bengaluru using ETABS are mentioned. Application of capacity spectrum is explained and illustrated using ETABS for a tall building. Research output of retrofitting techniques is mentioned. Response spectrum analysis using PYTHON is illustrated with the hope that it could be a less expensive approach as it is an open source code. A new approach of creating a fictitious (imaginary) boundary to obtain blast loads on below-ground structures devised by the author is presented with an example. Aimed at senior undergraduates and graduates in civil engineering, earthquake engineering and structural engineering, this book: Explains in a simple manner the fundamentals of structural dynamics pertaining to earthquake and blast resistant design Illustrates seismic resistant designs such as ductile design philosophy and limit state design with the use of capacity spectrum Discusses frequency domain analysis and Laplace transform approach in detail Explains solutions of building frames using software like ETABS and STAAD Covers numerical simulation using a well-known open source tool PYTHON