Random Graph Dynamics

Random Graph Dynamics PDF Author: Rick Durrett
Publisher: Cambridge University Press
ISBN: 1139460889
Category : Mathematics
Languages : en
Pages : 203

Get Book Here

Book Description
The theory of random graphs began in the late 1950s in several papers by Erdos and Renyi. In the late twentieth century, the notion of six degrees of separation, meaning that any two people on the planet can be connected by a short chain of people who know each other, inspired Strogatz and Watts to define the small world random graph in which each site is connected to k close neighbors, but also has long-range connections. At a similar time, it was observed in human social and sexual networks and on the Internet that the number of neighbors of an individual or computer has a power law distribution. This inspired Barabasi and Albert to define the preferential attachment model, which has these properties. These two papers have led to an explosion of research. The purpose of this book is to use a wide variety of mathematical argument to obtain insights into the properties of these graphs. A unique feature is the interest in the dynamics of process taking place on the graph in addition to their geometric properties, such as connectedness and diameter.

P-adic Deterministic and Random Dynamics

P-adic Deterministic and Random Dynamics PDF Author: Andrei Y. Khrennikov
Publisher: Springer Science & Business Media
ISBN: 1402026609
Category : Science
Languages : en
Pages : 279

Get Book Here

Book Description
This book provides an overview of the theory of p-adic (and more general non-Archimedean) dynamical systems. The main part of the book is devoted to discrete dynamical systems. It presents a model of probabilistic thinking on p-adic mental space based on ultrametric diffusion. Coverage also details p-adic neural networks and their applications to cognitive sciences: learning algorithms, memory recalling.

Random Operators

Random Operators PDF Author: Michael Aizenman
Publisher: American Mathematical Soc.
ISBN: 1470419130
Category : Mathematics
Languages : en
Pages : 343

Get Book Here

Book Description
This book provides an introduction to the mathematical theory of disorder effects on quantum spectra and dynamics. Topics covered range from the basic theory of spectra and dynamics of self-adjoint operators through Anderson localization--presented here via the fractional moment method, up to recent results on resonant delocalization. The subject's multifaceted presentation is organized into seventeen chapters, each focused on either a specific mathematical topic or on a demonstration of the theory's relevance to physics, e.g., its implications for the quantum Hall effect. The mathematical chapters include general relations of quantum spectra and dynamics, ergodicity and its implications, methods for establishing spectral and dynamical localization regimes, applications and properties of the Green function, its relation to the eigenfunction correlator, fractional moments of Herglotz-Pick functions, the phase diagram for tree graph operators, resonant delocalization, the spectral statistics conjecture, and related results. The text incorporates notes from courses that were presented at the authors' respective institutions and attended by graduate students and postdoctoral researchers.

Small Worlds

Small Worlds PDF Author: Duncan J. Watts
Publisher: Princeton University Press
ISBN: 0691188335
Category : Mathematics
Languages : en
Pages : 279

Get Book Here

Book Description
Everyone knows the small-world phenomenon: soon after meeting a stranger, we are surprised to discover that we have a mutual friend, or we are connected through a short chain of acquaintances. In his book, Duncan Watts uses this intriguing phenomenon--colloquially called "six degrees of separation"--as a prelude to a more general exploration: under what conditions can a small world arise in any kind of network? The networks of this story are everywhere: the brain is a network of neurons; organisations are people networks; the global economy is a network of national economies, which are networks of markets, which are in turn networks of interacting producers and consumers. Food webs, ecosystems, and the Internet can all be represented as networks, as can strategies for solving a problem, topics in a conversation, and even words in a language. Many of these networks, the author claims, will turn out to be small worlds. How do such networks matter? Simply put, local actions can have global consequences, and the relationship between local and global dynamics depends critically on the network's structure. Watts illustrates the subtleties of this relationship using a variety of simple models---the spread of infectious disease through a structured population; the evolution of cooperation in game theory; the computational capacity of cellular automata; and the sychronisation of coupled phase-oscillators. Watts's novel approach is relevant to many problems that deal with network connectivity and complex systems' behaviour in general: How do diseases (or rumours) spread through social networks? How does cooperation evolve in large groups? How do cascading failures propagate through large power grids, or financial systems? What is the most efficient architecture for an organisation, or for a communications network? This fascinating exploration will be fruitful in a remarkable variety of fields, including physics and mathematics, as well as sociology, economics, and biology.

Dynamics of Gambling: Origins of Randomness in Mechanical Systems

Dynamics of Gambling: Origins of Randomness in Mechanical Systems PDF Author: Jaroslaw Strzalko
Publisher: Springer
ISBN: 364203960X
Category : Science
Languages : en
Pages : 160

Get Book Here

Book Description
Our everyday life is in?uenced by many unexpected (dif?cult to predict) events usually referred as a chance. Probably, we all are as we are due to the accumulation point of a multitude of chance events. Gambling games that have been known to human beings nearly from the beginning of our civilization are based on chance events. These chance events have created the dream that everybody can easily become rich. This pursuit made gambling so popular. This book is devoted to the dynamics of the mechanical randomizers and we try to solve the problem why mechanical device (roulette) or a rigid body (a coin or a die) operating in the way described by the laws of classical mechanics can behave in such a way and produce a pseudorandom outcome. During mathematical lessons in primary school we are taught that the outcome of the coin tossing experiment is random and that the probability that the tossed coin lands heads (tails) up is equal to 1/2. Approximately, at the same time during physics lessons we are told that the motion of the rigid body (coin is an example of suchabody)isfullydeterministic. Typically,studentsarenotgiventheanswertothe question Why this duality in the interpretation of the simple mechanical experiment is possible? Trying to answer this question we describe the dynamics of the gambling games based on the coin toss, the throw of the die, and the roulette run.

Topological Dynamics of Random Dynamical Systems

Topological Dynamics of Random Dynamical Systems PDF Author: Nguyen Dinh Cong
Publisher: Oxford University Press
ISBN: 9780198501572
Category : Mathematics
Languages : en
Pages : 216

Get Book Here

Book Description
This book is the first systematic treatment of the theory of topological dynamics of random dynamical systems. A relatively new field, the theory of random dynamical systems unites and develops the classical deterministic theory of dynamical systems and probability theory, finding numerous applications in disciplines ranging from physics and biology to engineering, finance and economics. This book presents in detail the solutions to the most fundamental problems of topological dynamics: linearization of nonlinear smooth systems, classification, and structural stability of linear hyperbolic systems. Employing the tools and methods of algebraic ergodic theory, the theory presented in the book has surprisingly beautiful results showing the richness of random dynamical systems as well as giving a gentle generalization of the classical deterministic theory.

Dynamic Random Walks

Dynamic Random Walks PDF Author: Nadine Guillotin-Plantard
Publisher: Elsevier
ISBN: 0080462847
Category : Mathematics
Languages : en
Pages : 279

Get Book Here

Book Description
The aim of this book is to report on the progress realized in probability theory in the field of dynamic random walks and to present applications in computer science, mathematical physics and finance. Each chapter contains didactical material as well as more advanced technical sections. Few appendices will help refreshing memories (if necessary!).· New probabilistic model, new results in probability theory· Original applications in computer science· Applications in mathematical physics· Applications in finance

Image Analysis, Random Fields and Dynamic Monte Carlo Methods

Image Analysis, Random Fields and Dynamic Monte Carlo Methods PDF Author: Gerhard Winkler
Publisher: Springer Science & Business Media
ISBN: 3642975224
Category : Mathematics
Languages : en
Pages : 321

Get Book Here

Book Description
This text is concerned with a probabilistic approach to image analysis as initiated by U. GRENANDER, D. and S. GEMAN, B.R. HUNT and many others, and developed and popularized by D. and S. GEMAN in a paper from 1984. It formally adopts the Bayesian paradigm and therefore is referred to as 'Bayesian Image Analysis'. There has been considerable and still growing interest in prior models and, in particular, in discrete Markov random field methods. Whereas image analysis is replete with ad hoc techniques, Bayesian image analysis provides a general framework encompassing various problems from imaging. Among those are such 'classical' applications like restoration, edge detection, texture discrimination, motion analysis and tomographic reconstruction. The subject is rapidly developing and in the near future is likely to deal with high-level applications like object recognition. Fascinating experiments by Y. CHOW, U. GRENANDER and D.M. KEENAN (1987), (1990) strongly support this belief.

Random Perturbation of PDEs and Fluid Dynamic Models

Random Perturbation of PDEs and Fluid Dynamic Models PDF Author: Franco Flandoli
Publisher: Springer Science & Business Media
ISBN: 3642182305
Category : Mathematics
Languages : en
Pages : 187

Get Book Here

Book Description
This volume explores the random perturbation of PDEs and fluid dynamic models. The text describes the role of additive and bilinear multiplicative noise, and includes examples of abstract parabolic evolution equations.

Dynamic Random Access Memory Semiconductors of One Megabit and Above from Taiwan

Dynamic Random Access Memory Semiconductors of One Megabit and Above from Taiwan PDF Author: United States International Trade Commission
Publisher:
ISBN:
Category : Random access memory
Languages : en
Pages : 138

Get Book Here

Book Description