Author: Jack K. Hale
Publisher: Springer Science & Business Media
ISBN: 1461244269
Category : Mathematics
Languages : en
Pages : 577
Book Description
In recent years, due primarily to the proliferation of computers, dynamical systems has again returned to its roots in applications. It is the aim of this book to provide undergraduate and beginning graduate students in mathematics or science and engineering with a modest foundation of knowledge. Equations in dimensions one and two constitute the majority of the text, and in particular it is demonstrated that the basic notion of stability and bifurcations of vector fields are easily explained for scalar autonomous equations. Further, the authors investigate the dynamics of planar autonomous equations where new dynamical behavior, such as periodic and homoclinic orbits appears.
Dynamics and Bifurcations
Author: Jack K. Hale
Publisher: Springer Science & Business Media
ISBN: 1461244269
Category : Mathematics
Languages : en
Pages : 577
Book Description
In recent years, due primarily to the proliferation of computers, dynamical systems has again returned to its roots in applications. It is the aim of this book to provide undergraduate and beginning graduate students in mathematics or science and engineering with a modest foundation of knowledge. Equations in dimensions one and two constitute the majority of the text, and in particular it is demonstrated that the basic notion of stability and bifurcations of vector fields are easily explained for scalar autonomous equations. Further, the authors investigate the dynamics of planar autonomous equations where new dynamical behavior, such as periodic and homoclinic orbits appears.
Publisher: Springer Science & Business Media
ISBN: 1461244269
Category : Mathematics
Languages : en
Pages : 577
Book Description
In recent years, due primarily to the proliferation of computers, dynamical systems has again returned to its roots in applications. It is the aim of this book to provide undergraduate and beginning graduate students in mathematics or science and engineering with a modest foundation of knowledge. Equations in dimensions one and two constitute the majority of the text, and in particular it is demonstrated that the basic notion of stability and bifurcations of vector fields are easily explained for scalar autonomous equations. Further, the authors investigate the dynamics of planar autonomous equations where new dynamical behavior, such as periodic and homoclinic orbits appears.
Dynamics and Bifurcations of Non-Smooth Mechanical Systems
Author: Remco I. Leine
Publisher: Springer Science & Business Media
ISBN: 3540443983
Category : Mathematics
Languages : en
Pages : 245
Book Description
This monograph combines the knowledge of both the field of nonlinear dynamics and non-smooth mechanics, presenting a framework for a class of non-smooth mechanical systems using techniques from both fields. The book reviews recent developments, and opens the field to the nonlinear dynamics community. This book addresses researchers and graduate students in engineering and mathematics interested in the modelling, simulation and dynamics of non-smooth systems and nonlinear dynamics.
Publisher: Springer Science & Business Media
ISBN: 3540443983
Category : Mathematics
Languages : en
Pages : 245
Book Description
This monograph combines the knowledge of both the field of nonlinear dynamics and non-smooth mechanics, presenting a framework for a class of non-smooth mechanical systems using techniques from both fields. The book reviews recent developments, and opens the field to the nonlinear dynamics community. This book addresses researchers and graduate students in engineering and mathematics interested in the modelling, simulation and dynamics of non-smooth systems and nonlinear dynamics.
Elements of Differentiable Dynamics and Bifurcation Theory
Author: David Ruelle
Publisher: Elsevier
ISBN: 1483272184
Category : Mathematics
Languages : en
Pages : 196
Book Description
Elements of Differentiable Dynamics and Bifurcation Theory provides an introduction to differentiable dynamics, with emphasis on bifurcation theory and hyperbolicity that is essential for the understanding of complicated time evolutions occurring in nature. This book discusses the differentiable dynamics, vector fields, fixed points and periodic orbits, and stable and unstable manifolds. The bifurcations of fixed points of a map and periodic orbits, case of semiflows, and saddle-node and Hopf bifurcation are also elaborated. This text likewise covers the persistence of normally hyperbolic manifolds, hyperbolic sets, homoclinic and heteroclinic intersections, and global bifurcations. This publication is suitable for mathematicians and mathematically inclined students of the natural sciences.
Publisher: Elsevier
ISBN: 1483272184
Category : Mathematics
Languages : en
Pages : 196
Book Description
Elements of Differentiable Dynamics and Bifurcation Theory provides an introduction to differentiable dynamics, with emphasis on bifurcation theory and hyperbolicity that is essential for the understanding of complicated time evolutions occurring in nature. This book discusses the differentiable dynamics, vector fields, fixed points and periodic orbits, and stable and unstable manifolds. The bifurcations of fixed points of a map and periodic orbits, case of semiflows, and saddle-node and Hopf bifurcation are also elaborated. This text likewise covers the persistence of normally hyperbolic manifolds, hyperbolic sets, homoclinic and heteroclinic intersections, and global bifurcations. This publication is suitable for mathematicians and mathematically inclined students of the natural sciences.
Dynamical Systems, Bifurcation Analysis and Applications
Author: Mohd Hafiz Mohd
Publisher: Springer Nature
ISBN: 9813298324
Category : Mathematics
Languages : en
Pages : 239
Book Description
This book is the result of Southeast Asian Mathematical Society (SEAMS) School 2018 on Dynamical Systems and Bifurcation Analysis (DySBA). It addresses the latest developments in the field of dynamical systems, and highlights the importance of numerical continuation studies in tracking both stable and unstable steady states and bifurcation points to gain better understanding of the dynamics of the systems. The SEAMS School 2018 on DySBA was held in Penang from 6th to 13th August at the School of Mathematical Sciences, Universiti Sains Malaysia.The SEAMS Schools are part of series of intensive study programs that aim to provide opportunities for an advanced learning experience in mathematics via planned lectures, contributed talks, and hands-on workshop. This book will appeal to those postgraduates, lecturers and researchers working in the field of dynamical systems and their applications. Senior undergraduates in Mathematics will also find it useful.
Publisher: Springer Nature
ISBN: 9813298324
Category : Mathematics
Languages : en
Pages : 239
Book Description
This book is the result of Southeast Asian Mathematical Society (SEAMS) School 2018 on Dynamical Systems and Bifurcation Analysis (DySBA). It addresses the latest developments in the field of dynamical systems, and highlights the importance of numerical continuation studies in tracking both stable and unstable steady states and bifurcation points to gain better understanding of the dynamics of the systems. The SEAMS School 2018 on DySBA was held in Penang from 6th to 13th August at the School of Mathematical Sciences, Universiti Sains Malaysia.The SEAMS Schools are part of series of intensive study programs that aim to provide opportunities for an advanced learning experience in mathematics via planned lectures, contributed talks, and hands-on workshop. This book will appeal to those postgraduates, lecturers and researchers working in the field of dynamical systems and their applications. Senior undergraduates in Mathematics will also find it useful.
Methods In Equivariant Bifurcations And Dynamical Systems
Author: Pascal Chossat
Publisher: World Scientific Publishing Company
ISBN: 9813105445
Category : Science
Languages : en
Pages : 422
Book Description
This invaluable book presents a comprehensive introduction to bifurcation theory in the presence of symmetry, an applied mathematical topic which has developed considerably over the past twenty years and has been very successful in analysing and predicting pattern formation and other critical phenomena in most areas of science where nonlinear models are involved, like fluid flow instabilities, chemical waves, elasticity and population dynamics.The book has two aims. One is to expound the mathematical methods of equivariant bifurcation theory. Beyond the classical bifurcation tools, such as center manifold and normal form reductions, the presence of symmetry requires the introduction of the algebraic and geometric formalism of Lie group theory and transformation group methods. For the first time, all these methods in equivariant bifurcations are presented in a coherent and self-consistent way in a book.The other aim is to present the most recent ideas and results in this theory, in relation to applications. This includes bifurcations of relative equilibria and relative periodic orbits for compact and noncompact group actions, heteroclinic cycles and forced symmetry-breaking perturbations. Although not all recent contributions could be included and a choice had to be made, a rather complete description of these new developments is provided. At the end of every chapter, exercises are offered to the reader.
Publisher: World Scientific Publishing Company
ISBN: 9813105445
Category : Science
Languages : en
Pages : 422
Book Description
This invaluable book presents a comprehensive introduction to bifurcation theory in the presence of symmetry, an applied mathematical topic which has developed considerably over the past twenty years and has been very successful in analysing and predicting pattern formation and other critical phenomena in most areas of science where nonlinear models are involved, like fluid flow instabilities, chemical waves, elasticity and population dynamics.The book has two aims. One is to expound the mathematical methods of equivariant bifurcation theory. Beyond the classical bifurcation tools, such as center manifold and normal form reductions, the presence of symmetry requires the introduction of the algebraic and geometric formalism of Lie group theory and transformation group methods. For the first time, all these methods in equivariant bifurcations are presented in a coherent and self-consistent way in a book.The other aim is to present the most recent ideas and results in this theory, in relation to applications. This includes bifurcations of relative equilibria and relative periodic orbits for compact and noncompact group actions, heteroclinic cycles and forced symmetry-breaking perturbations. Although not all recent contributions could be included and a choice had to be made, a rather complete description of these new developments is provided. At the end of every chapter, exercises are offered to the reader.
Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields
Author: John Guckenheimer
Publisher: Springer Science & Business Media
ISBN: 1461211409
Category : Mathematics
Languages : en
Pages : 475
Book Description
An application of the techniques of dynamical systems and bifurcation theories to the study of nonlinear oscillations. Taking their cue from Poincare, the authors stress the geometrical and topological properties of solutions of differential equations and iterated maps. Numerous exercises, some of which require nontrivial algebraic manipulations and computer work, convey the important analytical underpinnings of problems in dynamical systems and help readers develop an intuitive feel for the properties involved.
Publisher: Springer Science & Business Media
ISBN: 1461211409
Category : Mathematics
Languages : en
Pages : 475
Book Description
An application of the techniques of dynamical systems and bifurcation theories to the study of nonlinear oscillations. Taking their cue from Poincare, the authors stress the geometrical and topological properties of solutions of differential equations and iterated maps. Numerous exercises, some of which require nontrivial algebraic manipulations and computer work, convey the important analytical underpinnings of problems in dynamical systems and help readers develop an intuitive feel for the properties involved.
Hyperbolicity and Sensitive Chaotic Dynamics at Homoclinic Bifurcations
Author: Jacob Palis Júnior
Publisher: Cambridge University Press
ISBN: 9780521475723
Category : Mathematics
Languages : en
Pages : 248
Book Description
A self-contained introduction to the classical theory and its generalizations, aimed at mathematicians and scientists working in dynamical systems.
Publisher: Cambridge University Press
ISBN: 9780521475723
Category : Mathematics
Languages : en
Pages : 248
Book Description
A self-contained introduction to the classical theory and its generalizations, aimed at mathematicians and scientists working in dynamical systems.
Lectures on Bifurcations, Dynamics and Symmetry
Author: Michael J. Field
Publisher: CRC Press
ISBN: 1000673472
Category : Mathematics
Languages : en
Pages : 172
Book Description
This book is an expanded version of a Master Class on the symmetric bifurcation theory of differential equations given by the author at the University of Twente in 1995. The notes cover a wide range of recent results in the subject, and focus on the dynamics that can appear in the generic bifurcation theory of symmetric differential equations. This text covers a wide range of current results in the subject of bifurcations, dynamics and symmetry. The style and format of the original lectures has largely been maintained and the notes include over 70 exercises.
Publisher: CRC Press
ISBN: 1000673472
Category : Mathematics
Languages : en
Pages : 172
Book Description
This book is an expanded version of a Master Class on the symmetric bifurcation theory of differential equations given by the author at the University of Twente in 1995. The notes cover a wide range of recent results in the subject, and focus on the dynamics that can appear in the generic bifurcation theory of symmetric differential equations. This text covers a wide range of current results in the subject of bifurcations, dynamics and symmetry. The style and format of the original lectures has largely been maintained and the notes include over 70 exercises.
The FitzHugh-Nagumo Model
Author: C. Rocsoreanu
Publisher: Springer Science & Business Media
ISBN: 9401595488
Category : Mathematics
Languages : en
Pages : 245
Book Description
The present monograph analyses the FitzHugh-Nagumo (F-N) model Le. , the Cauchy problem for some generalized Van der Pol equation depending on three real parameters a, band c. This model, given in (1. 1. 17), governs the initiation of the cardiac impulse. The presence of the three parameters leads to a large variety of dy namics, each of them responsible for a specific functioning of the heart. For physiologists it is highly desirable to have aglobai view of all possible qualitatively distinct responses of the F-N model for all values of the pa rameters. This reduces to the knowledge of the global bifurcation diagram. So far, only a few partial results appeared and they were spread through out the literature. Our work provides a more or less complete theoretical and numerical investigation of the complex phase dynamics and bifurca tions associated with the F-N dynamical system. This study includes the static and dynamic bifurcations generated by the variation of a, band c and the corresponding oscillations, of special interest for applications. It enables one to predict all possible types of initiations of heart beats and the mechanism of transformation of some types of oscillations into others by following the dynamics along transient phase space trajectories. Of course, all these results hold for the F-N model. The global phase space picture enables one to determine the domain of validity of this model.
Publisher: Springer Science & Business Media
ISBN: 9401595488
Category : Mathematics
Languages : en
Pages : 245
Book Description
The present monograph analyses the FitzHugh-Nagumo (F-N) model Le. , the Cauchy problem for some generalized Van der Pol equation depending on three real parameters a, band c. This model, given in (1. 1. 17), governs the initiation of the cardiac impulse. The presence of the three parameters leads to a large variety of dy namics, each of them responsible for a specific functioning of the heart. For physiologists it is highly desirable to have aglobai view of all possible qualitatively distinct responses of the F-N model for all values of the pa rameters. This reduces to the knowledge of the global bifurcation diagram. So far, only a few partial results appeared and they were spread through out the literature. Our work provides a more or less complete theoretical and numerical investigation of the complex phase dynamics and bifurca tions associated with the F-N dynamical system. This study includes the static and dynamic bifurcations generated by the variation of a, band c and the corresponding oscillations, of special interest for applications. It enables one to predict all possible types of initiations of heart beats and the mechanism of transformation of some types of oscillations into others by following the dynamics along transient phase space trajectories. Of course, all these results hold for the F-N model. The global phase space picture enables one to determine the domain of validity of this model.
Bifurcation Theory And Applications
Author: Shouhong Wang
Publisher: World Scientific
ISBN: 9814480592
Category : Science
Languages : en
Pages : 391
Book Description
This book covers comprehensive bifurcation theory and its applications to dynamical systems and partial differential equations (PDEs) from science and engineering, including in particular PDEs from physics, chemistry, biology, and hydrodynamics.The book first introduces bifurcation theories recently developed by the authors, on steady state bifurcation for a class of nonlinear problems with even order nondegenerate nonlinearities, regardless of the multiplicity of the eigenvalues, and on attractor bifurcations for nonlinear evolution equations, a new notion of bifurcation.With this new notion of bifurcation, many longstanding bifurcation problems in science and engineering are becoming accessible, and are treated in the second part of the book. In particular, applications are covered for a variety of PDEs from science and engineering, including the Kuramoto-Sivashinsky equation, the Cahn-Hillard equation, the Ginzburg-Landau equation, reaction-diffusion equations in biology and chemistry, the Benard convection problem, and the Taylor problem. The applications provide, on the one hand, general recipes for other applications of the theory addressed in this book, and on the other, full classifications of the bifurcated attractor and the global attractor as the control parameters cross certain critical values, dictated usually by the eigenvalues of the linearized problems. It is expected that the book will greatly advance the study of nonlinear dynamics for many problems in science and engineering.
Publisher: World Scientific
ISBN: 9814480592
Category : Science
Languages : en
Pages : 391
Book Description
This book covers comprehensive bifurcation theory and its applications to dynamical systems and partial differential equations (PDEs) from science and engineering, including in particular PDEs from physics, chemistry, biology, and hydrodynamics.The book first introduces bifurcation theories recently developed by the authors, on steady state bifurcation for a class of nonlinear problems with even order nondegenerate nonlinearities, regardless of the multiplicity of the eigenvalues, and on attractor bifurcations for nonlinear evolution equations, a new notion of bifurcation.With this new notion of bifurcation, many longstanding bifurcation problems in science and engineering are becoming accessible, and are treated in the second part of the book. In particular, applications are covered for a variety of PDEs from science and engineering, including the Kuramoto-Sivashinsky equation, the Cahn-Hillard equation, the Ginzburg-Landau equation, reaction-diffusion equations in biology and chemistry, the Benard convection problem, and the Taylor problem. The applications provide, on the one hand, general recipes for other applications of the theory addressed in this book, and on the other, full classifications of the bifurcated attractor and the global attractor as the control parameters cross certain critical values, dictated usually by the eigenvalues of the linearized problems. It is expected that the book will greatly advance the study of nonlinear dynamics for many problems in science and engineering.