Dynamical Theory of X-ray Diffraction

Dynamical Theory of X-ray Diffraction PDF Author: André Authier
Publisher: Oxford University Press, USA
ISBN: 9780198528920
Category : Science
Languages : en
Pages : 700

Get Book Here

Book Description
Publisher Description

Dynamical Theory of X-ray Diffraction

Dynamical Theory of X-ray Diffraction PDF Author: André Authier
Publisher: Oxford University Press, USA
ISBN: 9780198528920
Category : Science
Languages : en
Pages : 700

Get Book Here

Book Description
Publisher Description

X-Ray and Neutron Dynamical Diffraction

X-Ray and Neutron Dynamical Diffraction PDF Author: André Authier
Publisher: Springer Science & Business Media
ISBN: 1461558794
Category : Science
Languages : en
Pages : 419

Get Book Here

Book Description
This volume collects the proceedings of the 23rd International Course of Crystallography, entitled "X-ray and Neutron Dynamical Diffraction, Theory and Applications," which took place in the fascinating setting of Erice in Sicily, Italy. It was run as a NATO Advanced Studies Institute with A. Authier (France) and S. Lagomarsino (Italy) as codirectors, and L. Riva di Sanseverino and P. Spadon (Italy) as local organizers, R. Colella (USA) and B. K. Tanner (UK) being the two other members of the organizing committee. It was attended by about one hundred participants from twenty four different countries. Two basic theories may be used to describe the diffraction of radiation by crystalline matter. The first one, the so-called geometrical, or kinematical theory, is approximate and is applicable to small, highly imperfect crystals. It is used for the determination of crystal structures and describes the diffraction of powders and polycrystalline materials. The other one, the so-called dynamical theory, is applicable to perfect or nearly perfect crystals. For that reason, dynamical diffraction of X-rays and neutrons constitutes the theoretical basis of a great variety of applications such as: • the techniques used for the characterization of nearly perfect high technology materials, semiconductors, piezoelectric, electrooptic, ferroelectric, magnetic crystals, • the X-ray optical devices used in all modem applications of Synchrotron Radiation (EXAFS, High Resolution X-ray Diffractometry, magnetic and nuclear resonant scattering, topography, etc. ), and • X-ray and neutron interferometry.

X-Ray Multiple-Wave Diffraction

X-Ray Multiple-Wave Diffraction PDF Author: Shih-Lin Chang
Publisher: Springer Science & Business Media
ISBN: 3662109840
Category : Science
Languages : en
Pages : 443

Get Book Here

Book Description
X-ray multiple-wave diffraction, sometimes called multiple diffraction or N-beam diffraction, results from the scattering of X-rays from periodic two or higher-dimensional structures, like 2-d and 3-d crystals and even quasi crystals. The interaction of the X-rays with the periodic arrangement of atoms usually provides structural information about the scatterer. Unlike the usual Bragg reflection, the so-called two-wave diffraction, the multiply diffracted intensities are sensitive to the phases of the structure factors in volved. This gives X-ray multiple-wave diffraction the chance to solve the X-ray phase problem. On the other hand, the condition for generating an X ray multiple-wave diffraction is much more strict than in two-wave cases. This makes X-ray multiple-wave diffraction a useful technique for precise measure ments of crystal lattice constants and the wavelength of radiation sources. Recent progress in the application of this particular diffraction technique to surfaces, thin films, and less ordered systems has demonstrated the diver sity and practicability of the technique for structural research in condensed matter physics, materials sciences, crystallography, and X-ray optics. The first book on this subject, Multiple Diffraction of X-Rays in Crystals, was published in 1984, and intended to give a contemporary review on the fundamental and application aspects of this diffraction.

Dynamical Scattering of X-Rays in Crystals

Dynamical Scattering of X-Rays in Crystals PDF Author: Z.G. Pinsker
Publisher: Springer
ISBN: 9783642812095
Category : Science
Languages : en
Pages : 0

Get Book Here

Book Description
(Historical Survey) The discovery of X-ray diffraction in crystals by LAUE, FRIDRICH and KNIPPING in 1912 [1.1] served as the starting pOint for the development of scientific research along a number of important lines. We shall discuss just a few of them. The above discovery convincingly demonstrated the wave properties of X-rays. This, together with the previously established electromagnetic nature of radiation, confirmed the hypothesis that X-rays form the short-wave part of the electromagnetic spectrum. Further, this discovery was the first and decisive experimental proof of the periodic structure of crystals. In fact, theoretical crystallography had already arrived at this conclusion, mainly as an outcome of the theory of the space groups of symmetry elaborated by FEDOROV [1.2] and SCHOENFLIES [1.3]. From the optics of visible light we know that the radiation of a wave length of the same order as, and preferably less than, the period of a grat ing suffers diffraction on periodic objects of the type of optical grating. Thus, the discovery proved that the wavelength of an X-ray must be of the order of interatomic distances. It became clear why the visible light of wavelengths exceeding the crystal lattice periods by about 500 to 1000 times failed to reveal the periodic structure of crystals in diffraction experi ments.

Theoretical Concepts of X-Ray Nanoscale Analysis

Theoretical Concepts of X-Ray Nanoscale Analysis PDF Author: Andrei Benediktovich
Publisher: Springer Science & Business Media
ISBN: 3642381774
Category : Technology & Engineering
Languages : en
Pages : 325

Get Book Here

Book Description
This book provides a concise survey of modern theoretical concepts of X-ray materials analysis. The principle features of the book are: basics of X-ray scattering, interaction between X-rays and matter and new theoretical concepts of X-ray scattering. The various X-ray techniques are considered in detail: high-resolution X-ray diffraction, X-ray reflectivity, grazing-incidence small-angle X-ray scattering and X-ray residual stress analysis. All the theoretical methods presented use the unified physical approach. This makes the book especially useful for readers learning and performing data analysis with different techniques. The theory is applicable to studies of bulk materials of all kinds, including single crystals and polycrystals as well as to surface studies under grazing incidence. The book appeals to researchers and graduate students alike.

X-ray Diffraction Topography

X-ray Diffraction Topography PDF Author: Brian Keith Tanner
Publisher: Pergamon
ISBN:
Category : Science
Languages : en
Pages : 192

Get Book Here

Book Description
X-Ray Diffraction Topography presents an elementary treatment of X-ray topography which is comprehensible to the non-specialist. It discusses the development of the principles and application of the subject matter. X-ray topography is the study of crystals which use x-ray diffraction. Some of the topics covered in the book are the basic dynamical x-ray diffraction theory, the Berg-Barrett method, Lang's method, double crystal methods, the contrast on x-ray topography, and the analysis of crystal defects and distortions. The crystals grown from solution are covered. The naturally occurring cr.

Multiple Diffraction of X-Rays in Crystals

Multiple Diffraction of X-Rays in Crystals PDF Author: Shih-Lin In-Hang
Publisher: Springer Science & Business Media
ISBN: 3642821669
Category : Science
Languages : en
Pages : 312

Get Book Here

Book Description
The three-dimensional arrangement of atoms and molecules in crystals and the comparable magnitude of x-ray wavelengths and interatomic distances make it possible for crystals to have more than one set of atomic planes that satisfy Bragg's law and simultaneously diffract an incident x-ray beam - this is the so-called multiple diffraction. This type of diffraction should, in prin ciple, reflect three-dimensional information about the structure of the dif fracting material. Recent progress in understanding this diffraction phenome non and in utilizing this diffraction technique in solid-state and materials sciences reveals the diversity as well as the importance of multiple diffraction of x-rays in application. Unfortunately, there has been no single book written that gives a sys tematic review of this type of diffraction, encompasses its diverse applica tions, and foresees future trends gf development. It is for this purpose that this book is designed. It is hoped that its appearance may possibly turn more attention of condensed-matter physicists, chemists and material scientists toward this particular phenomenon, and that new methods of non-destructive analysis of matter using this diffraction technique may be developed in the future.

Covariant Dynamical Theory of X-Ray Diffraction

Covariant Dynamical Theory of X-Ray Diffraction PDF Author: Arthur Dyshekov
Publisher:
ISBN:
Category : Electronic books
Languages : en
Pages : 0

Get Book Here

Book Description
The proposed nonstandard diffraction theory is constructed directly from the Maxwell equations for the crystalline medium in the X-ray wavelength range. Analysis of Maxwell?s equations for dynamic diffraction is possible using the method of multiple scales which is modified to the vector character of the problem. In this case, the small parameter of the expansion is the Fourier component of the polarizability of the crystal. The second-order wave equation is analyzed without any assumptions about the possibility of the interaction between the refracted and scattered waves which automatically leads to the dynamic character of the scattering. The unified consideration of different geometrical schemes of diffraction including grazing geometry is possible. This is due to the construction of a unified wave field in the crystal and obtaining the field amplitudes according to the boundary conditions. The proposed theory allows generalization to the case of an imperfect crystal. Thus, a unified approach to account for deformations and other crystal structure disturbances in all diffraction schemes is implemented. The determination of a unified wave field without separation of the refracted and scattered waves is of the greatest importance in the analysis of secondary processes.

X-Ray Diffraction Crystallography

X-Ray Diffraction Crystallography PDF Author: Yoshio Waseda
Publisher: Springer Science & Business Media
ISBN: 3642166350
Category : Technology & Engineering
Languages : en
Pages : 320

Get Book Here

Book Description
X-ray diffraction crystallography for powder samples is a well-established and widely used method. It is applied to materials characterization to reveal the atomic scale structure of various substances in a variety of states. The book deals with fundamental properties of X-rays, geometry analysis of crystals, X-ray scattering and diffraction in polycrystalline samples and its application to the determination of the crystal structure. The reciprocal lattice and integrated diffraction intensity from crystals and symmetry analysis of crystals are explained. To learn the method of X-ray diffraction crystallography well and to be able to cope with the given subject, a certain number of exercises is presented in the book to calculate specific values for typical examples. This is particularly important for beginners in X-ray diffraction crystallography. One aim of this book is to offer guidance to solving the problems of 90 typical substances. For further convenience, 100 supplementary exercises are also provided with solutions. Some essential points with basic equations are summarized in each chapter, together with some relevant physical constants and the atomic scattering factors of the elements.

X-ray Scattering from Semiconductors

X-ray Scattering from Semiconductors PDF Author: Paul F. Fewster
Publisher: World Scientific
ISBN: 1860941591
Category : Science
Languages : en
Pages : 303

Get Book Here

Book Description
X-ray scattering is used extensively to provide detailed structural information about materials. Semiconductors have benefited from X-ray scattering techniques as an essential feedback method for crystal growth, including compositional and thickness determination of thin layers. The methods have been developed to reveal very detailed structural information concerning material quality, interface structure, relaxation, defects, surface damage, and more.