Author: Steven L. Brunton
Publisher: Cambridge University Press
ISBN: 1009098489
Category : Computers
Languages : en
Pages : 615
Book Description
A textbook covering data-science and machine learning methods for modelling and control in engineering and science, with Python and MATLAB®.
Data-Driven Science and Engineering
Author: Steven L. Brunton
Publisher: Cambridge University Press
ISBN: 1009098489
Category : Computers
Languages : en
Pages : 615
Book Description
A textbook covering data-science and machine learning methods for modelling and control in engineering and science, with Python and MATLAB®.
Publisher: Cambridge University Press
ISBN: 1009098489
Category : Computers
Languages : en
Pages : 615
Book Description
A textbook covering data-science and machine learning methods for modelling and control in engineering and science, with Python and MATLAB®.
Dynamical Systems with Applications using MATLAB®
Author: Stephen Lynch
Publisher: Springer Science & Business Media
ISBN: 0817681566
Category : Technology & Engineering
Languages : en
Pages : 458
Book Description
This introduction to dynamical systems theory guides readers through theory via example and the graphical MATLAB interface; the SIMULINK® accessory is used to simulate real-world dynamical processes. Examples included are from mechanics, electrical circuits, economics, population dynamics, epidemiology, nonlinear optics, materials science and neural networks. The book contains over 330 illustrations, 300 examples, and exercises with solutions.
Publisher: Springer Science & Business Media
ISBN: 0817681566
Category : Technology & Engineering
Languages : en
Pages : 458
Book Description
This introduction to dynamical systems theory guides readers through theory via example and the graphical MATLAB interface; the SIMULINK® accessory is used to simulate real-world dynamical processes. Examples included are from mechanics, electrical circuits, economics, population dynamics, epidemiology, nonlinear optics, materials science and neural networks. The book contains over 330 illustrations, 300 examples, and exercises with solutions.
Dynamical Systems with Applications using Mathematica®
Author: Stephen Lynch
Publisher: Springer Science & Business Media
ISBN: 0817645861
Category : Mathematics
Languages : en
Pages : 481
Book Description
This book provides an introduction to the theory of dynamical systems with the aid of the Mathematica® computer algebra package. The book has a very hands-on approach and takes the reader from basic theory to recently published research material. Emphasized throughout are numerous applications to biology, chemical kinetics, economics, electronics, epidemiology, nonlinear optics, mechanics, population dynamics, and neural networks. Theorems and proofs are kept to a minimum. The first section deals with continuous systems using ordinary differential equations, while the second part is devoted to the study of discrete dynamical systems.
Publisher: Springer Science & Business Media
ISBN: 0817645861
Category : Mathematics
Languages : en
Pages : 481
Book Description
This book provides an introduction to the theory of dynamical systems with the aid of the Mathematica® computer algebra package. The book has a very hands-on approach and takes the reader from basic theory to recently published research material. Emphasized throughout are numerous applications to biology, chemical kinetics, economics, electronics, epidemiology, nonlinear optics, mechanics, population dynamics, and neural networks. Theorems and proofs are kept to a minimum. The first section deals with continuous systems using ordinary differential equations, while the second part is devoted to the study of discrete dynamical systems.
Dynamical Systems with Applications using MATLAB®
Author: Stephen Lynch
Publisher: Springer
ISBN: 3319068202
Category : Mathematics
Languages : en
Pages : 519
Book Description
This textbook, now in its second edition, provides a broad introduction to both continuous and discrete dynamical systems, the theory of which is motivated by examples from a wide range of disciplines. It emphasizes applications and simulation utilizing MATLAB®, Simulink®, the Image Processing Toolbox® and the Symbolic Math toolbox®, including MuPAD. Features new to the second edition include · sections on series solutions of ordinary differential equations, perturbation methods, normal forms, Gröbner bases, and chaos synchronization; · chapters on image processing and binary oscillator computing; · hundreds of new illustrations, examples, and exercises with solutions; and · over eighty up-to-date MATLAB program files and Simulink model files available online. These files were voted MATLAB Central Pick of the Week in July 2013. The hands-on approach of Dynamical Systems with Applications using MATLAB, Second Edition, has minimal prerequisites, only requiring familiarity with ordinary differential equations. It will appeal to advanced undergraduate and graduate students, applied mathematicians, engineers, and researchers in a broad range of disciplines such as population dynamics, biology, chemistry, computing, economics, nonlinear optics, neural networks, and physics. Praise for the first edition Summing up, it can be said that this text allows the reader to have an easy and quick start to the huge field of dynamical systems theory. MATLAB/SIMULINK facilitate this approach under the aspect of learning by doing. —OR News/Operations Research Spectrum The MATLAB programs are kept as simple as possible and the author's experience has shown that this method of teaching using MATLAB works well with computer laboratory classes of small sizes.... I recommend ‘Dynamical Systems with Applications using MATLAB’ as a good handbook for a diverse readership: graduates and professionals in mathematics, physics, science and engineering. —Mathematica
Publisher: Springer
ISBN: 3319068202
Category : Mathematics
Languages : en
Pages : 519
Book Description
This textbook, now in its second edition, provides a broad introduction to both continuous and discrete dynamical systems, the theory of which is motivated by examples from a wide range of disciplines. It emphasizes applications and simulation utilizing MATLAB®, Simulink®, the Image Processing Toolbox® and the Symbolic Math toolbox®, including MuPAD. Features new to the second edition include · sections on series solutions of ordinary differential equations, perturbation methods, normal forms, Gröbner bases, and chaos synchronization; · chapters on image processing and binary oscillator computing; · hundreds of new illustrations, examples, and exercises with solutions; and · over eighty up-to-date MATLAB program files and Simulink model files available online. These files were voted MATLAB Central Pick of the Week in July 2013. The hands-on approach of Dynamical Systems with Applications using MATLAB, Second Edition, has minimal prerequisites, only requiring familiarity with ordinary differential equations. It will appeal to advanced undergraduate and graduate students, applied mathematicians, engineers, and researchers in a broad range of disciplines such as population dynamics, biology, chemistry, computing, economics, nonlinear optics, neural networks, and physics. Praise for the first edition Summing up, it can be said that this text allows the reader to have an easy and quick start to the huge field of dynamical systems theory. MATLAB/SIMULINK facilitate this approach under the aspect of learning by doing. —OR News/Operations Research Spectrum The MATLAB programs are kept as simple as possible and the author's experience has shown that this method of teaching using MATLAB works well with computer laboratory classes of small sizes.... I recommend ‘Dynamical Systems with Applications using MATLAB’ as a good handbook for a diverse readership: graduates and professionals in mathematics, physics, science and engineering. —Mathematica
Dynamical Systems with Applications using Python
Author: Stephen Lynch
Publisher: Springer
ISBN: 3319781456
Category : Mathematics
Languages : en
Pages : 668
Book Description
This textbook provides a broad introduction to continuous and discrete dynamical systems. With its hands-on approach, the text leads the reader from basic theory to recently published research material in nonlinear ordinary differential equations, nonlinear optics, multifractals, neural networks, and binary oscillator computing. Dynamical Systems with Applications Using Python takes advantage of Python’s extensive visualization, simulation, and algorithmic tools to study those topics in nonlinear dynamical systems through numerical algorithms and generated diagrams. After a tutorial introduction to Python, the first part of the book deals with continuous systems using differential equations, including both ordinary and delay differential equations. The second part of the book deals with discrete dynamical systems and progresses to the study of both continuous and discrete systems in contexts like chaos control and synchronization, neural networks, and binary oscillator computing. These later sections are useful reference material for undergraduate student projects. The book is rounded off with example coursework to challenge students’ programming abilities and Python-based exam questions. This book will appeal to advanced undergraduate and graduate students, applied mathematicians, engineers, and researchers in a range of disciplines, such as biology, chemistry, computing, economics, and physics. Since it provides a survey of dynamical systems, a familiarity with linear algebra, real and complex analysis, calculus, and ordinary differential equations is necessary, and knowledge of a programming language like C or Java is beneficial but not essential.
Publisher: Springer
ISBN: 3319781456
Category : Mathematics
Languages : en
Pages : 668
Book Description
This textbook provides a broad introduction to continuous and discrete dynamical systems. With its hands-on approach, the text leads the reader from basic theory to recently published research material in nonlinear ordinary differential equations, nonlinear optics, multifractals, neural networks, and binary oscillator computing. Dynamical Systems with Applications Using Python takes advantage of Python’s extensive visualization, simulation, and algorithmic tools to study those topics in nonlinear dynamical systems through numerical algorithms and generated diagrams. After a tutorial introduction to Python, the first part of the book deals with continuous systems using differential equations, including both ordinary and delay differential equations. The second part of the book deals with discrete dynamical systems and progresses to the study of both continuous and discrete systems in contexts like chaos control and synchronization, neural networks, and binary oscillator computing. These later sections are useful reference material for undergraduate student projects. The book is rounded off with example coursework to challenge students’ programming abilities and Python-based exam questions. This book will appeal to advanced undergraduate and graduate students, applied mathematicians, engineers, and researchers in a range of disciplines, such as biology, chemistry, computing, economics, and physics. Since it provides a survey of dynamical systems, a familiarity with linear algebra, real and complex analysis, calculus, and ordinary differential equations is necessary, and knowledge of a programming language like C or Java is beneficial but not essential.
Dynamical Systems
Author: Shlomo Sternberg
Publisher: Courier Corporation
ISBN: 0486477053
Category : Mathematics
Languages : en
Pages : 276
Book Description
A pioneer in the field of dynamical systems discusses one-dimensional dynamics, differential equations, random walks, iterated function systems, symbolic dynamics, and Markov chains. Supplementary materials include PowerPoint slides and MATLAB exercises. 2010 edition.
Publisher: Courier Corporation
ISBN: 0486477053
Category : Mathematics
Languages : en
Pages : 276
Book Description
A pioneer in the field of dynamical systems discusses one-dimensional dynamics, differential equations, random walks, iterated function systems, symbolic dynamics, and Markov chains. Supplementary materials include PowerPoint slides and MATLAB exercises. 2010 edition.
Numerical Data Fitting in Dynamical Systems
Author: Klaus Schittkowski
Publisher: Springer Science & Business Media
ISBN: 1441957626
Category : Computers
Languages : en
Pages : 406
Book Description
Real life phenomena in engineering, natural, or medical sciences are often described by a mathematical model with the goal to analyze numerically the behaviour of the system. Advantages of mathematical models are their cheap availability, the possibility of studying extreme situations that cannot be handled by experiments, or of simulating real systems during the design phase before constructing a first prototype. Moreover, they serve to verify decisions, to avoid expensive and time consuming experimental tests, to analyze, understand, and explain the behaviour of systems, or to optimize design and production. As soon as a mathematical model contains differential dependencies from an additional parameter, typically the time, we call it a dynamical model. There are two key questions always arising in a practical environment: 1 Is the mathematical model correct? 2 How can I quantify model parameters that cannot be measured directly? In principle, both questions are easily answered as soon as some experimental data are available. The idea is to compare measured data with predicted model function values and to minimize the differences over the whole parameter space. We have to reject a model if we are unable to find a reasonably accurate fit. To summarize, parameter estimation or data fitting, respectively, is extremely important in all practical situations, where a mathematical model and corresponding experimental data are available to describe the behaviour of a dynamical system.
Publisher: Springer Science & Business Media
ISBN: 1441957626
Category : Computers
Languages : en
Pages : 406
Book Description
Real life phenomena in engineering, natural, or medical sciences are often described by a mathematical model with the goal to analyze numerically the behaviour of the system. Advantages of mathematical models are their cheap availability, the possibility of studying extreme situations that cannot be handled by experiments, or of simulating real systems during the design phase before constructing a first prototype. Moreover, they serve to verify decisions, to avoid expensive and time consuming experimental tests, to analyze, understand, and explain the behaviour of systems, or to optimize design and production. As soon as a mathematical model contains differential dependencies from an additional parameter, typically the time, we call it a dynamical model. There are two key questions always arising in a practical environment: 1 Is the mathematical model correct? 2 How can I quantify model parameters that cannot be measured directly? In principle, both questions are easily answered as soon as some experimental data are available. The idea is to compare measured data with predicted model function values and to minimize the differences over the whole parameter space. We have to reject a model if we are unable to find a reasonably accurate fit. To summarize, parameter estimation or data fitting, respectively, is extremely important in all practical situations, where a mathematical model and corresponding experimental data are available to describe the behaviour of a dynamical system.
Random Dynamical Systems
Author: Rabi Bhattacharya
Publisher: Cambridge University Press
ISBN: 1139461621
Category : Mathematics
Languages : en
Pages : 5
Book Description
This treatment provides an exposition of discrete time dynamic processes evolving over an infinite horizon. Chapter 1 reviews some mathematical results from the theory of deterministic dynamical systems, with particular emphasis on applications to economics. The theory of irreducible Markov processes, especially Markov chains, is surveyed in Chapter 2. Equilibrium and long run stability of a dynamical system in which the law of motion is subject to random perturbations is the central theme of Chapters 3-5. A unified account of relatively recent results, exploiting splitting and contractions, that have found applications in many contexts is presented in detail. Chapter 6 explains how a random dynamical system may emerge from a class of dynamic programming problems. With examples and exercises, readers are guided from basic theory to the frontier of applied mathematical research.
Publisher: Cambridge University Press
ISBN: 1139461621
Category : Mathematics
Languages : en
Pages : 5
Book Description
This treatment provides an exposition of discrete time dynamic processes evolving over an infinite horizon. Chapter 1 reviews some mathematical results from the theory of deterministic dynamical systems, with particular emphasis on applications to economics. The theory of irreducible Markov processes, especially Markov chains, is surveyed in Chapter 2. Equilibrium and long run stability of a dynamical system in which the law of motion is subject to random perturbations is the central theme of Chapters 3-5. A unified account of relatively recent results, exploiting splitting and contractions, that have found applications in many contexts is presented in detail. Chapter 6 explains how a random dynamical system may emerge from a class of dynamic programming problems. With examples and exercises, readers are guided from basic theory to the frontier of applied mathematical research.
Adaptive Signal Processing
Author: Tülay Adali
Publisher: John Wiley & Sons
ISBN: 0470575743
Category : Science
Languages : en
Pages : 428
Book Description
Leading experts present the latest research results in adaptive signal processing Recent developments in signal processing have made it clear that significant performance gains can be achieved beyond those achievable using standard adaptive filtering approaches. Adaptive Signal Processing presents the next generation of algorithms that will produce these desired results, with an emphasis on important applications and theoretical advancements. This highly unique resource brings together leading authorities in the field writing on the key topics of significance, each at the cutting edge of its own area of specialty. It begins by addressing the problem of optimization in the complex domain, fully developing a framework that enables taking full advantage of the power of complex-valued processing. Then, the challenges of multichannel processing of complex-valued signals are explored. This comprehensive volume goes on to cover Turbo processing, tracking in the subspace domain, nonlinear sequential state estimation, and speech-bandwidth extension. Examines the seven most important topics in adaptive filtering that will define the next-generation adaptive filtering solutions Introduces the powerful adaptive signal processing methods developed within the last ten years to account for the characteristics of real-life data: non-Gaussianity, non-circularity, non-stationarity, and non-linearity Features self-contained chapters, numerous examples to clarify concepts, and end-of-chapter problems to reinforce understanding of the material Contains contributions from acknowledged leaders in the field Adaptive Signal Processing is an invaluable tool for graduate students, researchers, and practitioners working in the areas of signal processing, communications, controls, radar, sonar, and biomedical engineering.
Publisher: John Wiley & Sons
ISBN: 0470575743
Category : Science
Languages : en
Pages : 428
Book Description
Leading experts present the latest research results in adaptive signal processing Recent developments in signal processing have made it clear that significant performance gains can be achieved beyond those achievable using standard adaptive filtering approaches. Adaptive Signal Processing presents the next generation of algorithms that will produce these desired results, with an emphasis on important applications and theoretical advancements. This highly unique resource brings together leading authorities in the field writing on the key topics of significance, each at the cutting edge of its own area of specialty. It begins by addressing the problem of optimization in the complex domain, fully developing a framework that enables taking full advantage of the power of complex-valued processing. Then, the challenges of multichannel processing of complex-valued signals are explored. This comprehensive volume goes on to cover Turbo processing, tracking in the subspace domain, nonlinear sequential state estimation, and speech-bandwidth extension. Examines the seven most important topics in adaptive filtering that will define the next-generation adaptive filtering solutions Introduces the powerful adaptive signal processing methods developed within the last ten years to account for the characteristics of real-life data: non-Gaussianity, non-circularity, non-stationarity, and non-linearity Features self-contained chapters, numerous examples to clarify concepts, and end-of-chapter problems to reinforce understanding of the material Contains contributions from acknowledged leaders in the field Adaptive Signal Processing is an invaluable tool for graduate students, researchers, and practitioners working in the areas of signal processing, communications, controls, radar, sonar, and biomedical engineering.
Programming for Computations - Python
Author: Svein Linge
Publisher: Springer
ISBN: 3319324284
Category : Computers
Languages : en
Pages : 244
Book Description
This book presents computer programming as a key method for solving mathematical problems. There are two versions of the book, one for MATLAB and one for Python. The book was inspired by the Springer book TCSE 6: A Primer on Scientific Programming with Python (by Langtangen), but the style is more accessible and concise, in keeping with the needs of engineering students. The book outlines the shortest possible path from no previous experience with programming to a set of skills that allows the students to write simple programs for solving common mathematical problems with numerical methods in engineering and science courses. The emphasis is on generic algorithms, clean design of programs, use of functions, and automatic tests for verification.
Publisher: Springer
ISBN: 3319324284
Category : Computers
Languages : en
Pages : 244
Book Description
This book presents computer programming as a key method for solving mathematical problems. There are two versions of the book, one for MATLAB and one for Python. The book was inspired by the Springer book TCSE 6: A Primer on Scientific Programming with Python (by Langtangen), but the style is more accessible and concise, in keeping with the needs of engineering students. The book outlines the shortest possible path from no previous experience with programming to a set of skills that allows the students to write simple programs for solving common mathematical problems with numerical methods in engineering and science courses. The emphasis is on generic algorithms, clean design of programs, use of functions, and automatic tests for verification.