Dynamic Models in Biology

Dynamic Models in Biology PDF Author: Stephen P. Ellner
Publisher: Princeton University Press
ISBN: 1400840961
Category : Science
Languages : en
Pages : 352

Get Book Here

Book Description
From controlling disease outbreaks to predicting heart attacks, dynamic models are increasingly crucial for understanding biological processes. Many universities are starting undergraduate programs in computational biology to introduce students to this rapidly growing field. In Dynamic Models in Biology, the first text on dynamic models specifically written for undergraduate students in the biological sciences, ecologist Stephen Ellner and mathematician John Guckenheimer teach students how to understand, build, and use dynamic models in biology. Developed from a course taught by Ellner and Guckenheimer at Cornell University, the book is organized around biological applications, with mathematics and computing developed through case studies at the molecular, cellular, and population levels. The authors cover both simple analytic models--the sort usually found in mathematical biology texts--and the complex computational models now used by both biologists and mathematicians. Linked to a Web site with computer-lab materials and exercises, Dynamic Models in Biology is a major new introduction to dynamic models for students in the biological sciences, mathematics, and engineering.

Dynamic Models in Biology

Dynamic Models in Biology PDF Author: Stephen P. Ellner
Publisher: Princeton University Press
ISBN: 1400840961
Category : Science
Languages : en
Pages : 352

Get Book Here

Book Description
From controlling disease outbreaks to predicting heart attacks, dynamic models are increasingly crucial for understanding biological processes. Many universities are starting undergraduate programs in computational biology to introduce students to this rapidly growing field. In Dynamic Models in Biology, the first text on dynamic models specifically written for undergraduate students in the biological sciences, ecologist Stephen Ellner and mathematician John Guckenheimer teach students how to understand, build, and use dynamic models in biology. Developed from a course taught by Ellner and Guckenheimer at Cornell University, the book is organized around biological applications, with mathematics and computing developed through case studies at the molecular, cellular, and population levels. The authors cover both simple analytic models--the sort usually found in mathematical biology texts--and the complex computational models now used by both biologists and mathematicians. Linked to a Web site with computer-lab materials and exercises, Dynamic Models in Biology is a major new introduction to dynamic models for students in the biological sciences, mathematics, and engineering.

Complex Population Dynamics

Complex Population Dynamics PDF Author: Peter Turchin
Publisher: Princeton University Press
ISBN: 0691090211
Category : Science
Languages : en
Pages : 470

Get Book Here

Book Description
Why do organisms become extremely abundant one year and then seem to disappear a few years later? Why do population outbreaks in particular species happen more or less regularly in certain locations, but only irregularly (or never at all) in other locations? Complex population dynamics have fascinated biologists for decades. By bringing together mathematical models, statistical analyses, and field experiments, this book offers a comprehensive new synthesis of the theory of population oscillations. Peter Turchin first reviews the conceptual tools that ecologists use to investigate population oscillations, introducing population modeling and the statistical analysis of time series data. He then provides an in-depth discussion of several case studies--including the larch budmoth, southern pine beetle, red grouse, voles and lemmings, snowshoe hare, and ungulates--to develop a new analysis of the mechanisms that drive population oscillations in nature. Through such work, the author argues, ecologists can develop general laws of population dynamics that will help turn ecology into a truly quantitative and predictive science. Complex Population Dynamics integrates theoretical and empirical studies into a major new synthesis of current knowledge about population dynamics. It is also a pioneering work that sets the course for ecology's future as a predictive science.

Dynamics of Biological Systems

Dynamics of Biological Systems PDF Author: Michael Small
Publisher: CRC Press
ISBN: 1439853363
Category : Mathematics
Languages : en
Pages : 286

Get Book Here

Book Description
From the spontaneous rapid firing of cortical neurons to the spatial diffusion of disease epidemics, biological systems exhibit rich dynamic behaviour over a vast range of time and space scales. Unifying many of these diverse phenomena, Dynamics of Biological Systems provides the computational and mathematical platform from which to understand the underlying processes of the phenomena. Through an extensive tour of various biological systems, the text introduces computational methods for simulating spatial diffusion processes in excitable media, such as the human heart, as well as mathematical tools for dealing with systems of nonlinear ordinary and partial differential equations, such as neuronal activation and disease diffusion. The mathematical models and computer simulations offer insight into the dynamics of temporal and spatial biological systems, including cardiac pacemakers, artificial electrical defibrillation, pandemics, pattern formation, flocking behaviour, the interaction of autonomous agents, and hierarchical and structured network topologies. Tools from complex systems and complex networks are also presented for dealing with real phenomenological systems. With exercises and projects in each chapter, this classroom-tested text shows students how to apply a variety of mathematical and computational techniques to model and analyze the temporal and spatial phenomena of biological systems. MATLAB® implementations of algorithms and case studies are available on the author’s website.

Dynamic Regression Models for Survival Data

Dynamic Regression Models for Survival Data PDF Author: Torben Martinussen
Publisher: Springer Science & Business Media
ISBN: 0387339604
Category : Medical
Languages : en
Pages : 471

Get Book Here

Book Description
This book studies and applies modern flexible regression models for survival data with a special focus on extensions of the Cox model and alternative models with the aim of describing time-varying effects of explanatory variables. Use of the suggested models and methods is illustrated on real data examples, using the R-package timereg developed by the authors, which is applied throughout the book with worked examples for the data sets.

Invasion Dynamics

Invasion Dynamics PDF Author: Cang Hui
Publisher: Oxford University Press
ISBN: 0191062537
Category : Science
Languages : en
Pages : 607

Get Book Here

Book Description
Humans have moved organisms around the world for centuries but it is only relatively recently that invasion ecology has grown into a mainstream research field. This book examines both the spread and impact dynamics of invasive species, placing the science of invasion biology on a new, more rigorous, theoretical footing, and proposing a concept of adaptive networks as the foundation for future research. Biological invasions are considered not as simple actions of invaders and reactions of invaded ecosystems, but as co-evolving complex adaptive systems with emergent features of network complexity and invasibility. Invasion Dynamics focuses on the ecology of invasive species and their impacts in recipient social-ecological systems. It discusses not only key advances and challenges within the traditional domain of invasion ecology, but introduces approaches, concepts, and insights from many other disciplines such as complexity science, systems science, and ecology more broadly. It will be of great value to invasion biologists analyzing spread and/or impact dynamics as well as other ecologists interested in spread processes or habitat management.

Lab Dynamics

Lab Dynamics PDF Author: Carl M. Cohen
Publisher: CSHL Press
ISBN: 0879698160
Category : Comportement organisationnel
Languages : en
Pages : 184

Get Book Here

Book Description
"Lab Dynamics is a book about the challenges to doing science and dealing with the individuals involved, including oneself. The authors, a scientist and a psychotherapist, draw on principles of group and behavioral psychology but speak to scientists in their own language about their own experiences. They offer in-depth, practical advice, real-life examples, and exercises tailored to scientific and technical workplaces on topics as diverse as conflict resolution, negotiation, dealing with supervision, working with competing peers, and making the transition from academia to industry." "This is a uniquely valuable contribution to the scientific literature, on a subject of direct importance to lab heads, postdocs, and students. It is also required reading for senior staff concerned about improving efficiency and effectiveness in academic and industrial research."--BOOK JACKET

Modeling Dynamic Phenomena in Molecular and Cellular Biology

Modeling Dynamic Phenomena in Molecular and Cellular Biology PDF Author: Lee A. Segel
Publisher: Cambridge University Press
ISBN: 9780521274777
Category : Mathematics
Languages : en
Pages : 326

Get Book Here

Book Description
The dynamic development of various processes is a central problem of biology and indeed of all the sciences. The mathematics describing that development is, in general, complicated, because the models that are realistic are usually nonlinear. Consequently many biologists may not notice a possible application of theory. They may be unable to decide whether a particular model captures the essence of a system, or to appreciate that analysis of a model can reveal important aspects of biological problems and may even describe in detail how a system works. The aim of this textbook is to remedy the situation by adopting a general approach to model analysis and applying it several times to problems (drawn primarily from molecular and cellular biology) of gradually increasing biological and mathematical complexity. Although material of considerable sophistication is included, little mathematical background is required - only some exposure to elementary calculus; appendixes supply the necessary mathematics and the author concentrates on concepts rather than techniques. He also emphasizes the role of computers in giving a full picture of model behavior and complementing more qualitative analysis. Some problems suitable for computer analysis are also included. This is a class-tested textbook suitable for a one-semester course for advanced undergraduate and beginning graduate students in biology or applied mathematics. It can also be used as a source book for teachers and a reference for specialists.

Nonlinear Dynamics, Mathematical Biology, And Social Science

Nonlinear Dynamics, Mathematical Biology, And Social Science PDF Author: Joshua M. Epstein
Publisher: CRC Press
ISBN: 0429973039
Category : Mathematics
Languages : en
Pages : 132

Get Book Here

Book Description
This book is based on a series of lectures on mathematical biology, the essential dynamics of complex and crucially important social systems, and the unifying power of mathematics and nonlinear dynamical systems theory.

Statistical Methods for Dynamic Treatment Regimes

Statistical Methods for Dynamic Treatment Regimes PDF Author: Bibhas Chakraborty
Publisher: Springer Science & Business Media
ISBN: 1461474280
Category : Medical
Languages : en
Pages : 220

Get Book Here

Book Description
Statistical Methods for Dynamic Treatment Regimes shares state of the art of statistical methods developed to address questions of estimation and inference for dynamic treatment regimes, a branch of personalized medicine. This volume demonstrates these methods with their conceptual underpinnings and illustration through analysis of real and simulated data. These methods are immediately applicable to the practice of personalized medicine, which is a medical paradigm that emphasizes the systematic use of individual patient information to optimize patient health care. This is the first single source to provide an overview of methodology and results gathered from journals, proceedings, and technical reports with the goal of orienting researchers to the field. The first chapter establishes context for the statistical reader in the landscape of personalized medicine. Readers need only have familiarity with elementary calculus, linear algebra, and basic large-sample theory to use this text. Throughout the text, authors direct readers to available code or packages in different statistical languages to facilitate implementation. In cases where code does not already exist, the authors provide analytic approaches in sufficient detail that any researcher with knowledge of statistical programming could implement the methods from scratch. This will be an important volume for a wide range of researchers, including statisticians, epidemiologists, medical researchers, and machine learning researchers interested in medical applications. Advanced graduate students in statistics and biostatistics will also find material in Statistical Methods for Dynamic Treatment Regimes to be a critical part of their studies.

Dynamic Systems Biology Modeling and Simulation

Dynamic Systems Biology Modeling and Simulation PDF Author: Joseph DiStefano III
Publisher: Academic Press
ISBN: 0124104932
Category : Science
Languages : en
Pages : 886

Get Book Here

Book Description
Dynamic Systems Biology Modeling and Simuation consolidates and unifies classical and contemporary multiscale methodologies for mathematical modeling and computer simulation of dynamic biological systems – from molecular/cellular, organ-system, on up to population levels. The book pedagogy is developed as a well-annotated, systematic tutorial – with clearly spelled-out and unified nomenclature – derived from the author's own modeling efforts, publications and teaching over half a century. Ambiguities in some concepts and tools are clarified and others are rendered more accessible and practical. The latter include novel qualitative theory and methodologies for recognizing dynamical signatures in data using structural (multicompartmental and network) models and graph theory; and analyzing structural and measurement (data) models for quantification feasibility. The level is basic-to-intermediate, with much emphasis on biomodeling from real biodata, for use in real applications. - Introductory coverage of core mathematical concepts such as linear and nonlinear differential and difference equations, Laplace transforms, linear algebra, probability, statistics and stochastics topics - The pertinent biology, biochemistry, biophysics or pharmacology for modeling are provided, to support understanding the amalgam of "math modeling with life sciences - Strong emphasis on quantifying as well as building and analyzing biomodels: includes methodology and computational tools for parameter identifiability and sensitivity analysis; parameter estimation from real data; model distinguishability and simplification; and practical bioexperiment design and optimization - Companion website provides solutions and program code for examples and exercises using Matlab, Simulink, VisSim, SimBiology, SAAMII, AMIGO, Copasi and SBML-coded models - A full set of PowerPoint slides are available from the author for teaching from his textbook. He uses them to teach a 10 week quarter upper division course at UCLA, which meets twice a week, so there are 20 lectures. They can easily be augmented or stretched for a 15 week semester course - Importantly, the slides are editable, so they can be readily adapted to a lecturer's personal style and course content needs. The lectures are based on excerpts from 12 of the first 13 chapters of DSBMS. They are designed to highlight the key course material, as a study guide and structure for students following the full text content - The complete PowerPoint slide package (~25 MB) can be obtained by instructors (or prospective instructors) by emailing the author directly, at: [email protected]