Author: Grace Hui Yang
Publisher: Springer Nature
ISBN: 3031023013
Category : Computers
Languages : en
Pages : 126
Book Description
Big data and human-computer information retrieval (HCIR) are changing IR. They capture the dynamic changes in the data and dynamic interactions of users with IR systems. A dynamic system is one which changes or adapts over time or a sequence of events. Many modern IR systems and data exhibit these characteristics which are largely ignored by conventional techniques. What is missing is an ability for the model to change over time and be responsive to stimulus. Documents, relevance, users and tasks all exhibit dynamic behavior that is captured in data sets typically collected over long time spans and models need to respond to these changes. Additionally, the size of modern datasets enforces limits on the amount of learning a system can achieve. Further to this, advances in IR interface, personalization and ad display demand models that can react to users in real time and in an intelligent, contextual way. In this book we provide a comprehensive and up-to-date introduction to Dynamic Information Retrieval Modeling, the statistical modeling of IR systems that can adapt to change. We define dynamics, what it means within the context of IR and highlight examples of problems where dynamics play an important role. We cover techniques ranging from classic relevance feedback to the latest applications of partially observable Markov decision processes (POMDPs) and a handful of useful algorithms and tools for solving IR problems incorporating dynamics. The theoretical component is based around the Markov Decision Process (MDP), a mathematical framework taken from the field of Artificial Intelligence (AI) that enables us to construct models that change according to sequential inputs. We define the framework and the algorithms commonly used to optimize over it and generalize it to the case where the inputs aren't reliable. We explore the topic of reinforcement learning more broadly and introduce another tool known as a Multi-Armed Bandit which is useful for cases where exploring model parameters is beneficial. Following this we introduce theories and algorithms which can be used to incorporate dynamics into an IR model before presenting an array of state-of-the-art research that already does, such as in the areas of session search and online advertising. Change is at the heart of modern Information Retrieval systems and this book will help equip the reader with the tools and knowledge needed to understand Dynamic Information Retrieval Modeling.
Dynamic Information Retrieval Modeling
Author: Grace Hui Yang
Publisher: Springer Nature
ISBN: 3031023013
Category : Computers
Languages : en
Pages : 126
Book Description
Big data and human-computer information retrieval (HCIR) are changing IR. They capture the dynamic changes in the data and dynamic interactions of users with IR systems. A dynamic system is one which changes or adapts over time or a sequence of events. Many modern IR systems and data exhibit these characteristics which are largely ignored by conventional techniques. What is missing is an ability for the model to change over time and be responsive to stimulus. Documents, relevance, users and tasks all exhibit dynamic behavior that is captured in data sets typically collected over long time spans and models need to respond to these changes. Additionally, the size of modern datasets enforces limits on the amount of learning a system can achieve. Further to this, advances in IR interface, personalization and ad display demand models that can react to users in real time and in an intelligent, contextual way. In this book we provide a comprehensive and up-to-date introduction to Dynamic Information Retrieval Modeling, the statistical modeling of IR systems that can adapt to change. We define dynamics, what it means within the context of IR and highlight examples of problems where dynamics play an important role. We cover techniques ranging from classic relevance feedback to the latest applications of partially observable Markov decision processes (POMDPs) and a handful of useful algorithms and tools for solving IR problems incorporating dynamics. The theoretical component is based around the Markov Decision Process (MDP), a mathematical framework taken from the field of Artificial Intelligence (AI) that enables us to construct models that change according to sequential inputs. We define the framework and the algorithms commonly used to optimize over it and generalize it to the case where the inputs aren't reliable. We explore the topic of reinforcement learning more broadly and introduce another tool known as a Multi-Armed Bandit which is useful for cases where exploring model parameters is beneficial. Following this we introduce theories and algorithms which can be used to incorporate dynamics into an IR model before presenting an array of state-of-the-art research that already does, such as in the areas of session search and online advertising. Change is at the heart of modern Information Retrieval systems and this book will help equip the reader with the tools and knowledge needed to understand Dynamic Information Retrieval Modeling.
Publisher: Springer Nature
ISBN: 3031023013
Category : Computers
Languages : en
Pages : 126
Book Description
Big data and human-computer information retrieval (HCIR) are changing IR. They capture the dynamic changes in the data and dynamic interactions of users with IR systems. A dynamic system is one which changes or adapts over time or a sequence of events. Many modern IR systems and data exhibit these characteristics which are largely ignored by conventional techniques. What is missing is an ability for the model to change over time and be responsive to stimulus. Documents, relevance, users and tasks all exhibit dynamic behavior that is captured in data sets typically collected over long time spans and models need to respond to these changes. Additionally, the size of modern datasets enforces limits on the amount of learning a system can achieve. Further to this, advances in IR interface, personalization and ad display demand models that can react to users in real time and in an intelligent, contextual way. In this book we provide a comprehensive and up-to-date introduction to Dynamic Information Retrieval Modeling, the statistical modeling of IR systems that can adapt to change. We define dynamics, what it means within the context of IR and highlight examples of problems where dynamics play an important role. We cover techniques ranging from classic relevance feedback to the latest applications of partially observable Markov decision processes (POMDPs) and a handful of useful algorithms and tools for solving IR problems incorporating dynamics. The theoretical component is based around the Markov Decision Process (MDP), a mathematical framework taken from the field of Artificial Intelligence (AI) that enables us to construct models that change according to sequential inputs. We define the framework and the algorithms commonly used to optimize over it and generalize it to the case where the inputs aren't reliable. We explore the topic of reinforcement learning more broadly and introduce another tool known as a Multi-Armed Bandit which is useful for cases where exploring model parameters is beneficial. Following this we introduce theories and algorithms which can be used to incorporate dynamics into an IR model before presenting an array of state-of-the-art research that already does, such as in the areas of session search and online advertising. Change is at the heart of modern Information Retrieval systems and this book will help equip the reader with the tools and knowledge needed to understand Dynamic Information Retrieval Modeling.
Dynamic Information Retrieval Modeling
Author: Grace Hui Yang
Publisher: Morgan & Claypool Publishers
ISBN: 1627055266
Category : Computers
Languages : en
Pages : 146
Book Description
Big data and human-computer information retrieval (HCIR) are changing IR. They capture the dynamic changes in the data and dynamic interactions of users with IR systems. A dynamic system is one which changes or adapts over time or a sequence of events. Many modern IR systems and data exhibit these characteristics which are largely ignored by conventional techniques. What is missing is an ability for the model to change over time and be responsive to stimulus. Documents, relevance, users and tasks all exhibit dynamic behavior that is captured in data sets typically collected over long time spans and models need to respond to these changes. Additionally, the size of modern datasets enforces limits on the amount of learning a system can achieve. Further to this, advances in IR interface, personalization and ad display demand models that can react to users in real time and in an intelligent, contextual way. In this book we provide a comprehensive and up-to-date introduction to Dynamic Information Retrieval Modeling, the statistical modeling of IR systems that can adapt to change. We define dynamics, what it means within the context of IR and highlight examples of problems where dynamics play an important role. We cover techniques ranging from classic relevance feedback to the latest applications of partially observable Markov decision processes (POMDPs) and a handful of useful algorithms and tools for solving IR problems incorporating dynamics. The theoretical component is based around the Markov Decision Process (MDP), a mathematical framework taken from the field of Artificial Intelligence (AI) that enables us to construct models that change according to sequential inputs. We define the framework and the algorithms commonly used to optimize over it and generalize it to the case where the inputs aren't reliable. We explore the topic of reinforcement learning more broadly and introduce another tool known as a Multi-Armed Bandit which is useful for cases where exploring model parameters is beneficial. Following this we introduce theories and algorithms which can be used to incorporate dynamics into an IR model before presenting an array of state-of-the-art research that already does, such as in the areas of session search and online advertising. Change is at the heart of modern Information Retrieval systems and this book will help equip the reader with the tools and knowledge needed to understand Dynamic Information Retrieval Modeling.
Publisher: Morgan & Claypool Publishers
ISBN: 1627055266
Category : Computers
Languages : en
Pages : 146
Book Description
Big data and human-computer information retrieval (HCIR) are changing IR. They capture the dynamic changes in the data and dynamic interactions of users with IR systems. A dynamic system is one which changes or adapts over time or a sequence of events. Many modern IR systems and data exhibit these characteristics which are largely ignored by conventional techniques. What is missing is an ability for the model to change over time and be responsive to stimulus. Documents, relevance, users and tasks all exhibit dynamic behavior that is captured in data sets typically collected over long time spans and models need to respond to these changes. Additionally, the size of modern datasets enforces limits on the amount of learning a system can achieve. Further to this, advances in IR interface, personalization and ad display demand models that can react to users in real time and in an intelligent, contextual way. In this book we provide a comprehensive and up-to-date introduction to Dynamic Information Retrieval Modeling, the statistical modeling of IR systems that can adapt to change. We define dynamics, what it means within the context of IR and highlight examples of problems where dynamics play an important role. We cover techniques ranging from classic relevance feedback to the latest applications of partially observable Markov decision processes (POMDPs) and a handful of useful algorithms and tools for solving IR problems incorporating dynamics. The theoretical component is based around the Markov Decision Process (MDP), a mathematical framework taken from the field of Artificial Intelligence (AI) that enables us to construct models that change according to sequential inputs. We define the framework and the algorithms commonly used to optimize over it and generalize it to the case where the inputs aren't reliable. We explore the topic of reinforcement learning more broadly and introduce another tool known as a Multi-Armed Bandit which is useful for cases where exploring model parameters is beneficial. Following this we introduce theories and algorithms which can be used to incorporate dynamics into an IR model before presenting an array of state-of-the-art research that already does, such as in the areas of session search and online advertising. Change is at the heart of modern Information Retrieval systems and this book will help equip the reader with the tools and knowledge needed to understand Dynamic Information Retrieval Modeling.
Dynamic Taxonomies and Faceted Search
Author: Giovanni Maria Sacco
Publisher: Springer Science & Business Media
ISBN: 3642023592
Category : Computers
Languages : en
Pages : 349
Book Description
Current access paradigms for the Web, i.e., direct access via search engines or database queries and navigational access via static taxonomies, have recently been criticized because they are too rigid or simplistic to effectively cope with a large number of practical search applications. A third paradigm, dynamic taxonomies and faceted search, focuses on user-centered conceptual exploration, which is far more frequent in search tasks than retrieval using exact specification, and has rapidly become pervasive in modern Web data retrieval, especially in critical applications such as product selection for e-commerce. It is a heavily interdisciplinary area, where data modeling, human factors, logic, inference, and efficient implementations must be dealt with holistically. Sacco, Tzitzikas, and their contributors provide a coherent roadmap to dynamic taxonomies and faceted search. The individual chapters, written by experts in each relevant field and carefully integrated by the editors, detail aspects like modeling, schema design, system implementation, search performance, and user interaction. The basic concepts of each area are introduced, and advanced topics and recent research are highlighted. An additional chapter is completely devoted to current and emerging application areas, including e-commerce, multimedia, multidimensional file systems, and geographical information systems. The presentation targets advanced undergraduates, graduate students and researchers from different areas – from computer science to library and information science – as well as advanced practitioners. Given that research results are currently scattered among very different publications, this volume will allow researchers to get a coherent and comprehensive picture of the state of the art.
Publisher: Springer Science & Business Media
ISBN: 3642023592
Category : Computers
Languages : en
Pages : 349
Book Description
Current access paradigms for the Web, i.e., direct access via search engines or database queries and navigational access via static taxonomies, have recently been criticized because they are too rigid or simplistic to effectively cope with a large number of practical search applications. A third paradigm, dynamic taxonomies and faceted search, focuses on user-centered conceptual exploration, which is far more frequent in search tasks than retrieval using exact specification, and has rapidly become pervasive in modern Web data retrieval, especially in critical applications such as product selection for e-commerce. It is a heavily interdisciplinary area, where data modeling, human factors, logic, inference, and efficient implementations must be dealt with holistically. Sacco, Tzitzikas, and their contributors provide a coherent roadmap to dynamic taxonomies and faceted search. The individual chapters, written by experts in each relevant field and carefully integrated by the editors, detail aspects like modeling, schema design, system implementation, search performance, and user interaction. The basic concepts of each area are introduced, and advanced topics and recent research are highlighted. An additional chapter is completely devoted to current and emerging application areas, including e-commerce, multimedia, multidimensional file systems, and geographical information systems. The presentation targets advanced undergraduates, graduate students and researchers from different areas – from computer science to library and information science – as well as advanced practitioners. Given that research results are currently scattered among very different publications, this volume will allow researchers to get a coherent and comprehensive picture of the state of the art.
Introduction to Information Retrieval
Author: Christopher D. Manning
Publisher: Cambridge University Press
ISBN: 1139472100
Category : Computers
Languages : en
Pages :
Book Description
Class-tested and coherent, this textbook teaches classical and web information retrieval, including web search and the related areas of text classification and text clustering from basic concepts. It gives an up-to-date treatment of all aspects of the design and implementation of systems for gathering, indexing, and searching documents; methods for evaluating systems; and an introduction to the use of machine learning methods on text collections. All the important ideas are explained using examples and figures, making it perfect for introductory courses in information retrieval for advanced undergraduates and graduate students in computer science. Based on feedback from extensive classroom experience, the book has been carefully structured in order to make teaching more natural and effective. Slides and additional exercises (with solutions for lecturers) are also available through the book's supporting website to help course instructors prepare their lectures.
Publisher: Cambridge University Press
ISBN: 1139472100
Category : Computers
Languages : en
Pages :
Book Description
Class-tested and coherent, this textbook teaches classical and web information retrieval, including web search and the related areas of text classification and text clustering from basic concepts. It gives an up-to-date treatment of all aspects of the design and implementation of systems for gathering, indexing, and searching documents; methods for evaluating systems; and an introduction to the use of machine learning methods on text collections. All the important ideas are explained using examples and figures, making it perfect for introductory courses in information retrieval for advanced undergraduates and graduate students in computer science. Based on feedback from extensive classroom experience, the book has been carefully structured in order to make teaching more natural and effective. Slides and additional exercises (with solutions for lecturers) are also available through the book's supporting website to help course instructors prepare their lectures.
Analytical Methods for Dynamic Modelers
Author: Hazhir Rahmandad
Publisher: MIT Press
ISBN: 0262331438
Category : Business & Economics
Languages : en
Pages : 443
Book Description
A user-friendly introduction to some of the most useful analytical tools for model building, estimation, and analysis, presenting key methods and examples. Simulation modeling is increasingly integrated into research and policy analysis of complex sociotechnical systems in a variety of domains. Model-based analysis and policy design inform a range of applications in fields from economics to engineering to health care. This book offers a hands-on introduction to key analytical methods for dynamic modeling. Bringing together tools and methodologies from fields as diverse as computational statistics, econometrics, and operations research in a single text, the book can be used for graduate-level courses and as a reference for dynamic modelers who want to expand their methodological toolbox. The focus is on quantitative techniques for use by dynamic modelers during model construction and analysis, and the material presented is accessible to readers with a background in college-level calculus and statistics. Each chapter describes a key method, presenting an introduction that emphasizes the basic intuition behind each method, tutorial style examples, references to key literature, and exercises. The chapter authors are all experts in the tools and methods they present. The book covers estimation of model parameters using quantitative data; understanding the links between model structure and its behavior; and decision support and optimization. An online appendix offers computer code for applications, models, and solutions to exercises. Contributors Wenyi An, Edward G. Anderson Jr., Yaman Barlas, Nishesh Chalise, Robert Eberlein, Hamed Ghoddusi, Winfried Grassmann, Peter S. Hovmand, Mohammad S. Jalali, Nitin Joglekar, David Keith, Juxin Liu, Erling Moxnes, Rogelio Oliva, Nathaniel D. Osgood, Hazhir Rahmandad, Raymond Spiteri, John Sterman, Jeroen Struben, Burcu Tan, Karen Yee, Gönenç Yücel
Publisher: MIT Press
ISBN: 0262331438
Category : Business & Economics
Languages : en
Pages : 443
Book Description
A user-friendly introduction to some of the most useful analytical tools for model building, estimation, and analysis, presenting key methods and examples. Simulation modeling is increasingly integrated into research and policy analysis of complex sociotechnical systems in a variety of domains. Model-based analysis and policy design inform a range of applications in fields from economics to engineering to health care. This book offers a hands-on introduction to key analytical methods for dynamic modeling. Bringing together tools and methodologies from fields as diverse as computational statistics, econometrics, and operations research in a single text, the book can be used for graduate-level courses and as a reference for dynamic modelers who want to expand their methodological toolbox. The focus is on quantitative techniques for use by dynamic modelers during model construction and analysis, and the material presented is accessible to readers with a background in college-level calculus and statistics. Each chapter describes a key method, presenting an introduction that emphasizes the basic intuition behind each method, tutorial style examples, references to key literature, and exercises. The chapter authors are all experts in the tools and methods they present. The book covers estimation of model parameters using quantitative data; understanding the links between model structure and its behavior; and decision support and optimization. An online appendix offers computer code for applications, models, and solutions to exercises. Contributors Wenyi An, Edward G. Anderson Jr., Yaman Barlas, Nishesh Chalise, Robert Eberlein, Hamed Ghoddusi, Winfried Grassmann, Peter S. Hovmand, Mohammad S. Jalali, Nitin Joglekar, David Keith, Juxin Liu, Erling Moxnes, Rogelio Oliva, Nathaniel D. Osgood, Hazhir Rahmandad, Raymond Spiteri, John Sterman, Jeroen Struben, Burcu Tan, Karen Yee, Gönenç Yücel
Information Retrieval
Author: Stefan Buttcher
Publisher: MIT Press
ISBN: 0262528878
Category : Computers
Languages : en
Pages : 633
Book Description
An introduction to information retrieval, the foundation for modern search engines, that emphasizes implementation and experimentation. Information retrieval is the foundation for modern search engines. This textbook offers an introduction to the core topics underlying modern search technologies, including algorithms, data structures, indexing, retrieval, and evaluation. The emphasis is on implementation and experimentation; each chapter includes exercises and suggestions for student projects. Wumpus—a multiuser open-source information retrieval system developed by one of the authors and available online—provides model implementations and a basis for student work. The modular structure of the book allows instructors to use it in a variety of graduate-level courses, including courses taught from a database systems perspective, traditional information retrieval courses with a focus on IR theory, and courses covering the basics of Web retrieval. In addition to its classroom use, Information Retrieval will be a valuable reference for professionals in computer science, computer engineering, and software engineering.
Publisher: MIT Press
ISBN: 0262528878
Category : Computers
Languages : en
Pages : 633
Book Description
An introduction to information retrieval, the foundation for modern search engines, that emphasizes implementation and experimentation. Information retrieval is the foundation for modern search engines. This textbook offers an introduction to the core topics underlying modern search technologies, including algorithms, data structures, indexing, retrieval, and evaluation. The emphasis is on implementation and experimentation; each chapter includes exercises and suggestions for student projects. Wumpus—a multiuser open-source information retrieval system developed by one of the authors and available online—provides model implementations and a basis for student work. The modular structure of the book allows instructors to use it in a variety of graduate-level courses, including courses taught from a database systems perspective, traditional information retrieval courses with a focus on IR theory, and courses covering the basics of Web retrieval. In addition to its classroom use, Information Retrieval will be a valuable reference for professionals in computer science, computer engineering, and software engineering.
Advances in Information Retrieval
Author: Center for Intelligent Information Retrieval
Publisher: Springer Science & Business Media
ISBN: 0792378121
Category : Computers
Languages : en
Pages : 326
Book Description
The NSF Center for Intelligent Information Retrieval (CIIR) was formed in the Computer Science Department of the University of Massachusetts, Amherst, in 1992. Through its efforts in basic research, applied research, and technology transfer, the CIIR has become known internationally as one of the leading research groups in the area of information retrieval. The CIIR focuses on research that results in more effective and efficient access and discovery in large, heterogeneous, distributed text and multimedia databases. The scope of the work that is done in the CIIR is broad and goes significantly beyond `traditional' areas of information retrieval such as retrieval models, cross-lingual search, and automatic query expansion. The research includes both low-level systems issues such as the design of protocols and architectures for distributed search, as well as more human-centered topics such as user interface design, visualization and data mining with text, and multimedia retrieval. Advances in Information Retrieval: Recent Research from the Center for Intelligent Information Retrieval is a collection of papers that covers a wide variety of topics in the general area of information retrieval. Together, they represent a snapshot of the state of the art in information retrieval at the turn of the century and at the end of a decade that has seen the advent of the World-Wide Web. The papers provide overviews and in-depth analysis of theory and experimental results. This book can be used as source material for graduate courses in information retrieval, and as a reference for researchers and practitioners in industry.
Publisher: Springer Science & Business Media
ISBN: 0792378121
Category : Computers
Languages : en
Pages : 326
Book Description
The NSF Center for Intelligent Information Retrieval (CIIR) was formed in the Computer Science Department of the University of Massachusetts, Amherst, in 1992. Through its efforts in basic research, applied research, and technology transfer, the CIIR has become known internationally as one of the leading research groups in the area of information retrieval. The CIIR focuses on research that results in more effective and efficient access and discovery in large, heterogeneous, distributed text and multimedia databases. The scope of the work that is done in the CIIR is broad and goes significantly beyond `traditional' areas of information retrieval such as retrieval models, cross-lingual search, and automatic query expansion. The research includes both low-level systems issues such as the design of protocols and architectures for distributed search, as well as more human-centered topics such as user interface design, visualization and data mining with text, and multimedia retrieval. Advances in Information Retrieval: Recent Research from the Center for Intelligent Information Retrieval is a collection of papers that covers a wide variety of topics in the general area of information retrieval. Together, they represent a snapshot of the state of the art in information retrieval at the turn of the century and at the end of a decade that has seen the advent of the World-Wide Web. The papers provide overviews and in-depth analysis of theory and experimental results. This book can be used as source material for graduate courses in information retrieval, and as a reference for researchers and practitioners in industry.
An Introduction to Neural Information Retrieval
Author: Bhaskar Mitra
Publisher: Foundations and Trends (R) in Information Retrieval
ISBN: 9781680835328
Category :
Languages : en
Pages : 142
Book Description
Efficient Query Processing for Scalable Web Search will be a valuable reference for researchers and developers working on This tutorial provides an accessible, yet comprehensive, overview of the state-of-the-art of Neural Information Retrieval.
Publisher: Foundations and Trends (R) in Information Retrieval
ISBN: 9781680835328
Category :
Languages : en
Pages : 142
Book Description
Efficient Query Processing for Scalable Web Search will be a valuable reference for researchers and developers working on This tutorial provides an accessible, yet comprehensive, overview of the state-of-the-art of Neural Information Retrieval.
Information Retrieval for Music and Motion
Author: Meinard Müller
Publisher: Springer Science & Business Media
ISBN: 3540740481
Category : Computers
Languages : en
Pages : 319
Book Description
Content-based multimedia retrieval is a challenging research field with many unsolved problems. This monograph details concepts and algorithms for robust and efficient information retrieval of two different types of multimedia data: waveform-based music data and human motion data. It first examines several approaches in music information retrieval, in particular general strategies as well as efficient algorithms. The book then introduces a general and unified framework for motion analysis, retrieval, and classification, highlighting the design of suitable features, the notion of similarity used to compare data streams, and data organization.
Publisher: Springer Science & Business Media
ISBN: 3540740481
Category : Computers
Languages : en
Pages : 319
Book Description
Content-based multimedia retrieval is a challenging research field with many unsolved problems. This monograph details concepts and algorithms for robust and efficient information retrieval of two different types of multimedia data: waveform-based music data and human motion data. It first examines several approaches in music information retrieval, in particular general strategies as well as efficient algorithms. The book then introduces a general and unified framework for motion analysis, retrieval, and classification, highlighting the design of suitable features, the notion of similarity used to compare data streams, and data organization.
Information Retrieval with Verbose Queries
Author: Manish Gupta
Publisher:
ISBN: 9781680830446
Category : Computers
Languages : en
Pages : 170
Book Description
The first monograph to provide a coherent and organized survey on this topic. It puts together the various research pieces of the puzzle, provides a comprehensive and structured overview of diverse proposed methods, and lists several application scenarios where effective verbose query processing can make a significant difference.
Publisher:
ISBN: 9781680830446
Category : Computers
Languages : en
Pages : 170
Book Description
The first monograph to provide a coherent and organized survey on this topic. It puts together the various research pieces of the puzzle, provides a comprehensive and structured overview of diverse proposed methods, and lists several application scenarios where effective verbose query processing can make a significant difference.