Dynamic Distribution System Restoration Strategy for Resilience Enhancement

Dynamic Distribution System Restoration Strategy for Resilience Enhancement PDF Author: Weijia Liu
Publisher:
ISBN:
Category : Electric generators
Languages : en
Pages : 5

Get Book Here

Book Description

Dynamic Distribution System Restoration Strategy for Resilience Enhancement

Dynamic Distribution System Restoration Strategy for Resilience Enhancement PDF Author: Weijia Liu
Publisher:
ISBN:
Category : Electric generators
Languages : en
Pages : 5

Get Book Here

Book Description


Modeling and Control Dynamics in Microgrid Systems with Renewable Energy Resources

Modeling and Control Dynamics in Microgrid Systems with Renewable Energy Resources PDF Author: Ramesh C. Bansal
Publisher: Academic Press
ISBN: 0323909906
Category : Technology & Engineering
Languages : en
Pages : 433

Get Book Here

Book Description
Modelling and Control Dynamics in Microgrid Systems with Renewable Energy Resources looks at complete microgrid systems integrated with renewable energy resources (RERs) such as solar, wind, biomass or fuel cells that facilitate remote applications and allow access to pollution-free energy. Designed and dedicated to providing a complete package on microgrid systems modelling and control dynamics, this book elaborates several aspects of control systems from classical approach to advanced techniques based on artificial intelligence. It captures the typical modes of operation of microgrid systems with distributed energy storage applications like battery, flywheel, electrical vehicles infrastructures that are integrated within microgrids with desired targets. More importantly, the techno-economics of these microgrid systems are well addressed to accelerate the process of achieving the SDG7 i.e., affordable and clean energy for all (E4ALL). This reference presents the latest developments including step by step modelling processes, data security and standards protocol for commissioning of microgrid projects, making this a useful tool for researchers, engineers and industrialists wanting a comprehensive reference on energy systems models. - Includes simulations with case studies and real-world applications of energy system models - Detailed systematic modeling with mathematical analysis is covered - Features possible operating scenarios with solutions to the encountered issues

Future Modern Distribution Networks Resilience

Future Modern Distribution Networks Resilience PDF Author: Mohammad Taghi Ameli
Publisher: Elsevier
ISBN: 0443160872
Category : Technology & Engineering
Languages : en
Pages : 440

Get Book Here

Book Description
Future Modern Distribution Networks Resilience examines the combined impact of low-probability and high-impact events on modern distribution systems' resilience. Using practical guidance, the book provides comprehensive approaches for improving energy systems' resilience by utilizing infrastructure and operational strategies. Divided in three parts, Part One provides a conceptual introduction and review of power system resilience, including topics such as risk and vulnerability assessment in power systems, resilience metrics, and power systems operation and planning. Part Two discusses modelling of vulnerability and resilience evaluation indices and cost-benefit analysis. Part Three reviews infrastructure and operational strategies to improve power system resilience, including robust grid hardening strategies, mobile energy storage and electric vehicles, and networked microgrids and renewable energy resources. With a strong focus on economic results and cost-effectives, Future Modern Distribution Networks Resilience is a practical reference for students, researchers and engineers interested in power engineering, energy systems, and renewable energy. - Reviews related concepts to active distribution systems resilience before, during, and after a sudden disaster - Presents analysis of risk and vulnerability for reliable evaluation, sustainable operation, and accurate planning of energy grids against low-probability and high-impact events - Highlights applications of practical metrics for resilience assessment of future energy networks - Provides guidance for the development of cost-effective resilient techniques for reducing the vulnerability of electrical grids to severe disasters

Planning and Operation Strategies for Enhancing Power System Flexibility in Low-Carbon Energy Transition

Planning and Operation Strategies for Enhancing Power System Flexibility in Low-Carbon Energy Transition PDF Author: Mingfei Ban
Publisher: Frontiers Media SA
ISBN: 2832545017
Category : Technology & Engineering
Languages : en
Pages : 150

Get Book Here

Book Description
The global energy system is undergoing a profound transformation from a system based mainly on fossil fuels to a low-carbon one based on variable renewable energy (VRE), such as wind power and solar power, to achieve the 2050 Paris Agreement. By 2050, solar and wind power, with more than 14,500 GW installed capacity, would account for three-fifths of global electricity generation. This transformation comes with significant challenges since high VRE shares will greatly increase system flexibility requirements for balancing supply and demand. Accordingly, all sectors of the power system need to unlock further requisite flexibility through technology, business, and policy innovations, including power supply, transmission, distribution, storage, and demand.

Enhancing the Resilience of the Nation's Electricity System

Enhancing the Resilience of the Nation's Electricity System PDF Author: National Academies of Sciences, Engineering, and Medicine
Publisher: National Academies Press
ISBN: 0309463076
Category : Science
Languages : en
Pages : 171

Get Book Here

Book Description
Americans' safety, productivity, comfort, and convenience depend on the reliable supply of electric power. The electric power system is a complex "cyber-physical" system composed of a network of millions of components spread out across the continent. These components are owned, operated, and regulated by thousands of different entities. Power system operators work hard to assure safe and reliable service, but large outages occasionally happen. Given the nature of the system, there is simply no way that outages can be completely avoided, no matter how much time and money is devoted to such an effort. The system's reliability and resilience can be improved but never made perfect. Thus, system owners, operators, and regulators must prioritize their investments based on potential benefits. Enhancing the Resilience of the Nation's Electricity System focuses on identifying, developing, and implementing strategies to increase the power system's resilience in the face of events that can cause large-area, long-duration outages: blackouts that extend over multiple service areas and last several days or longer. Resilience is not just about lessening the likelihood that these outages will occur. It is also about limiting the scope and impact of outages when they do occur, restoring power rapidly afterwards, and learning from these experiences to better deal with events in the future.

Power Grid Resilience against Natural Disasters

Power Grid Resilience against Natural Disasters PDF Author: Shunbo Lei
Publisher: John Wiley & Sons
ISBN: 1119801494
Category : Science
Languages : en
Pages : 340

Get Book Here

Book Description
POWER GRID RESILIENCE AGAINST NATURAL DISASTERS How to protect our power grids in the face of extreme weather events The field of structural and operational resilience of power systems, particularly against natural disasters, is of obvious importance in light of climate change and the accompanying increase in hurricanes, wildfires, tornados, frigid temperatures, and more. Addressing these vulnerabilities in service is a matter of increasing diligence for the electric power industry, and as such, targeted studies and advanced technologies are being developed to help address these issues generally—whether they be from the threat of cyber-attacks or of natural disasters. Power Grid Resilience against Natural Disasters provides, for the first time, a comprehensive and systematic introduction to resilience-enhancing planning and operation strategies of power grids against extreme events. It addresses, in detail, the three necessary steps to ensure power grid success: the preparedness prior to natural disasters, the response as natural disasters unfold, and the recovery after the event. Crucially, the authors put forward state-of-the-art methods towards improving today’s practices in managing these three arenas. Power Grid Resilience against Natural Disasters readers will also find: Data, tables, and illustrations to supplement and clarify the points put forward in each chapter Case studies on realistic power systems and industry standards and practices related to the topics covered Potential to be a supplementary text in advanced level power engineering courses Power Grid Resilience against Natural Disasters will be of interest to specialists and engineers, as well as planners and operators from industry. It can also be a useful resource for senior undergraduate students, postgraduate students, researchers, and research libraries. More, it will appeal to all readers with a strong background in power system analysis, operation and control, optimization methods, the Markov decision process, and probability and statistics.

Power Systems Resilience

Power Systems Resilience PDF Author: Naser Mahdavi Tabatabaei
Publisher: Springer
ISBN: 3319944428
Category : Technology & Engineering
Languages : en
Pages : 366

Get Book Here

Book Description
This book presents intuitive explanations of the principles and applications of power system resiliency, as well as a number of straightforward and practical methods for the impact analysis of risk events on power system operations. It also describes the challenges of modelling, distribution networks, optimal scheduling, multi-stage planning, deliberate attacks, cyber-physical systems and SCADA-based smart grids, and how to overcome these challenges. Further, it highlights the resiliency issues using various methods, including strengthening the system against high impact events with low frequency and the fast recovery of the system properties. A large number of specialists have collaborated to provide innovative solutions and research in power systems resiliency. They discuss the fundamentals and contemporary materials of power systems resiliency, theoretical and practical issues, as well as current issues and methods for controlling the risk attacks and other threats to AC power systems. The book includes theoretical research, significant results, case studies, and practical implementation processes to offer insights into electric power and engineering and energy systems. Showing how systems should respond in case of malicious attacks, and helping readers to decide on the best approaches, this book is essential reading for electrical engineers, researchers and specialists. The book is also useful as a reference for undergraduate and graduate students studying the resiliency and reliability of power systems.

Low-Carbon Oriented Improvement Strategy for Flexibility and Resiliency of Multi-Energy Systems

Low-Carbon Oriented Improvement Strategy for Flexibility and Resiliency of Multi-Energy Systems PDF Author: Yumin Zhang
Publisher: Frontiers Media SA
ISBN: 2832554377
Category : Technology & Engineering
Languages : en
Pages : 294

Get Book Here

Book Description
Due to the inherent volatility and randomness, the increasing share of energy from renewable resources presents a challenge to the operation of multi-energy systems with heterogeneous energy carriers such as electricity, heat, hydrogen, etc. These factors will make the systems hard to adjust their supply and demand flexibly to maintain energy balance to ensure reliability. Further, this hinders the development of a low-carbon and economically viable energy system. By making full use of the synergistic interaction of generation, transmission, load demand, and energy storage, a three-fold approach focused on quantifying demand flexibility, evaluating supply capabilities, and enhancing resilience can unlock the flexibility potential across various sectors of new energy systems. This approach provides an effective means of facilitating the transition from conventional energy systems to low-carbon, clean-energy-oriented paradigms. However, huge challenges arising from renewable energy pose great obstacles to the aforementioned solution pathway. The main objectives of this Research Topic are: 1. Develop advanced carbon emission accounting and measurement techniques for emerging multi-energy systems 2. Design effective methods for predicting renewable electricity generation 3. Proposed efficient methods for quantitative assessment of uncertainty from renewables and loads 4. Put forward advanced evaluation, optimization, and planning strategies incorporating diverse flexibility resources 5. Design multifaceted market mechanisms and collaborative frameworks balancing economics and low carbon footprint 6. Develop operational control and resilience-enhancement techniques for distribution networks under large-scale distributed energy integration

Enhancing the Resilience of the Nation's Electricity System

Enhancing the Resilience of the Nation's Electricity System PDF Author: National Academies of Sciences, Engineering, and Medicine
Publisher: National Academies Press
ISBN: 0309463106
Category : Science
Languages : en
Pages : 171

Get Book Here

Book Description
Americans' safety, productivity, comfort, and convenience depend on the reliable supply of electric power. The electric power system is a complex "cyber-physical" system composed of a network of millions of components spread out across the continent. These components are owned, operated, and regulated by thousands of different entities. Power system operators work hard to assure safe and reliable service, but large outages occasionally happen. Given the nature of the system, there is simply no way that outages can be completely avoided, no matter how much time and money is devoted to such an effort. The system's reliability and resilience can be improved but never made perfect. Thus, system owners, operators, and regulators must prioritize their investments based on potential benefits. Enhancing the Resilience of the Nation's Electricity System focuses on identifying, developing, and implementing strategies to increase the power system's resilience in the face of events that can cause large-area, long-duration outages: blackouts that extend over multiple service areas and last several days or longer. Resilience is not just about lessening the likelihood that these outages will occur. It is also about limiting the scope and impact of outages when they do occur, restoring power rapidly afterwards, and learning from these experiences to better deal with events in the future.

Resiliency of Power Distribution Systems

Resiliency of Power Distribution Systems PDF Author: Anurag K. Srivastava
Publisher: John Wiley & Sons
ISBN: 1119418674
Category : Technology & Engineering
Languages : en
Pages : 405

Get Book Here

Book Description
RESILIENCY OF POWER DISTRIBUTION SYSTEMS A revolutionary book covering the relevant concepts for resiliency-focused advancements of the distribution power grid Most resiliency and security guidelines for the power industry are focused on power transmission systems. As renewable energy and energy storage increasingly replace fossil-fuel-based power generation over the coming years, geospatially neighboring distributed energy resources will supply a majority of consumers and provide clean power through long transmission lines. These electric power distribution systems—the final stage in the delivery of electric power—carry electricity from the transmission system to individual consumers. New distributed devices will be essential to the grid to manage this variable power generation and enhance reliability and resilience while keeping electricity affordable as the world seeks solutions to climate change and threats from extreme events. In Resiliency of Power Distribution Systems, readers are provided with the tools to understand and enhance resiliency of distribution systems—and thereby, the entire power grid. In a shift from the present design and operation of the power system, the book is focused on improving the grid’s ability to predict, adapt, and respond to all hazards and threats. This, then, acts as a guide to ensure that any incident can be mitigated and responded to promptly and adequately. It also highlights the most advanced and applicable methodologies and architecture frameworks that evaluate degradation, advance proactive action, and transform system behavior to maintain normal operation, under extreme operating conditions. Resiliency of Power Distribution Systems readers will also find: Chapter organization that facilitates quick review of distribution fundamental and easy-but-thorough understanding of the importance of resiliency Real-world case studies where resilient power systems could have prevented massive financial and energy losses Frameworks to help mitigate cyber-physical attacks, strategize response on multiple timescales, and optimize operational efficiencies and priorities for the power grid Resiliency of Power Distribution Systems is a valuable reference for power system professionals including electrical engineers, utility operators, distribution system planners and engineers, and manufacturers, as well as members of the research community, energy market experts and policy makers, and graduate students on electrical engineering courses.