Durable Zinc-Oxide-Containing Regenerable Desulfurization Sorbents for Both Low- and High-Temperature Applications

Durable Zinc-Oxide-Containing Regenerable Desulfurization Sorbents for Both Low- and High-Temperature Applications PDF Author: Ranjani V. Siriwardane
Publisher:
ISBN:
Category : Chemical engineering
Languages : en
Pages : 9

Get Book Here

Book Description

Durable Zinc-Oxide-Containing Regenerable Desulfurization Sorbents for Both Low- and High-Temperature Applications

Durable Zinc-Oxide-Containing Regenerable Desulfurization Sorbents for Both Low- and High-Temperature Applications PDF Author: Ranjani V. Siriwardane
Publisher:
ISBN:
Category : Chemical engineering
Languages : en
Pages : 9

Get Book Here

Book Description


Durable Zinc Oxide-Based Regenerable Sorbents for Desulfurization of Syngas in a Fixed-Bed Reactor

Durable Zinc Oxide-Based Regenerable Sorbents for Desulfurization of Syngas in a Fixed-Bed Reactor PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 9

Get Book Here

Book Description
A fixed-bed regenerable desulfurization sorbent, identified as RVS-land developed by researchers at the U.S. Department of Energy's National Energy Technology Laboratory, was awarded the R & D 100 award in 2000 and is currently offered as a commercial product by Sued-Chemie Inc. An extensive testing program for this sorbent was undertaken which included tests at a wide range of temperatures, pressures and gas compositions both simulated and generated in an actual gasifier for sulfidation and regeneration. This testing has demonstrated that during these desulfurization tests, the RVS-1 sorbent maintained an effluent H2S concentration of 5 ppmv at temperatures from 260 to 600 C (500-1100 F) and pressures of 203-2026 kPa(2 to 20 atm) with a feed containing 1.2 vol% H2S. The types of syngas tested ranged from an oxygen-blown Texaco gasifier to biomass-generated syngas. The RVS-1 sorbent has high crush strength and attrition resistance, which, unlike past sorbent formulations, does not decrease with extended testing at actual at operating conditions. The sulfur capacity of the sorbent is roughly 17 to 20 wt.% and also remains constant during extended testing (25 cycles). In addition to H2S, the RVS-1 sorbent has also demonstrated the ability to remove dimethyl sulfide and carbonyl sulfide from syngas. During regeneration, the RVS-1 sorbent has been regenerated with dilute oxygen streams (1 to 7 vol% O2) at temperatures as low as 370 C (700 F) and pressures of 304-709 kPa(3 to 7 atm). Although regeneration can be initiated at 370 C (700 F), regeneration temperatures in excess of 538 C (1000 F) were found to be optimal. The presence of steam, carbon dioxide or sulfur dioxide (up to 6 vol%) did not have any visible effect on regeneration or sorbent performance during either sulfidation or regeneration. A number of commercial tests involving RVS-1 have been either conducted or are planned in the near future. The RVS-1 sorbent has been tested by Epyx, Aspen Systems and McDermott Technology (MTI), Inc for desulfurization of syngas produced by reforming of hydrocarbon liquid feedstocks for fuel cell applications. The RVS-1 sorbent was selected by MTI over other candidate sorbents for demonstration testing in their 500-kW ship service fuel cell program. It was also possible to obtain sulfur levels in the ppbv range with the modified RVS-1 sorbent.

Durable Zinc Oxide-containing Sorbents for Coal Gas Desulfurization

Durable Zinc Oxide-containing Sorbents for Coal Gas Desulfurization PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 17

Get Book Here

Book Description
Durable zinc-oxide containing sorbent pellets for removing hydrogen sulfide from a gas stream at an elevated temperature are made up to contain titania as a diluent, high-surface-area silica gel as a matrix material, and a binder. These materials are mixed, moistened, and formed into pellets, which are then dried and calcined. The resulting pellets undergo repeated cycles of sulfidation and regeneration without loss of reactivity and without mechanical degradation. Regeneration of the pellets is carried out by contacting the bed with an oxidizing gas mixture.

Enhanced Durability of High-temperature Desulfurization Sorbents for Moving-bed Applications

Enhanced Durability of High-temperature Desulfurization Sorbents for Moving-bed Applications PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 12

Get Book Here

Book Description
Chemical reactivity was determined at GECRD by measuring sorbent sulfur loading (defined as grams of sulfur absorbed per 100 g of fresh sorbent) in fresh and in cycled samples from a bench-scale reactor. Only formulations that exhibited a good balance of chemical and mechanical performance as fresh pellets were selected for further cyclic testing in the benchscale reactor system. Details of the bench-scale reactor and procedures have been given before (Ayala, 1991). The important aspect of the benchscale testing is that both absorption and regeneration were conducted in a packed-bed reactor simulating the time/temperature environment to which the sorbent would be exposed in a typical cycle of the full-scale moving-bed system. Absorption was carried out at 1000[degrees]F using any of three gas compositions, all having a deliberately high H[sub 2]S concentration (1 %) to accelerate testing. The oxidative regeneration was carried out between 1000 and 1250[degrees]F and 1--21% oxygen during the early phases of regeneration, and at 1400[degrees]F during the final phase simulating the temperature rise of the sorbent bed. Sixteen zinc titanate formulations were prepared as cylindrical extrudates. For all formulations, the calcination time was held constant at 2 hours. The following results were obtained: Formulations containing a 0.8 Zn:Ti ratio produced mixtures of several stoichiometric titanates: Zn[sub 2]Ti[sub 3]O[sub 8], ZnTiO[sub 3], and Zn[sub 2]TiO[sub 4], with the relative amount of each depending on temperature. Formulations containing a 2.0 Zn:Ti ratio exhibited exclusively the Zn[sub 2]TiO[sub 4] structure. The higher calcination temperature of 1800[degrees]F significantly reduced the porosity available for chemical reactivity, while the lower calcination temperature of 1400[degrees]F produced, in some cases, formulations with traces of residual unreacted zinc oxide and anatase titanium dioxide.

Spokane's Golden Jubilee

Spokane's Golden Jubilee PDF Author:
Publisher:
ISBN:
Category : Spokane (Wash.)
Languages : en
Pages : 20

Get Book Here

Book Description


Fuel Cells: Technologies for Fuel Processing

Fuel Cells: Technologies for Fuel Processing PDF Author: Dushyant Shekhawat
Publisher: Elsevier
ISBN: 0444535640
Category : Technology & Engineering
Languages : en
Pages : 569

Get Book Here

Book Description
Fuel Cells: Technologies for Fuel Processing provides an overview of the most important aspects of fuel reforming to the generally interested reader, researcher, technologist, teacher, student, or engineer. The topics covered include all aspects of fuel reforming: fundamental chemistry, different modes of reforming, catalysts, catalyst deactivation, fuel desulfurization, reaction engineering, novel reforming concepts, thermodynamics, heat and mass transfer issues, system design, and recent research and development. While no attempt is made to describe the fuel cell itself, there is sufficient description of the fuel cell to show how it affects the fuel reformer. By focusing on the fundamentals, this book aims to be a source of information now and in the future. By avoiding time-sensitive information/analysis (e.g., economics) it serves as a single source of information for scientists and engineers in fuel processing technology. The material is presented in such a way that this book will serve as a reference for graduate level courses, fuel cell developers, and fuel cell researchers. - Chapters written by experts in each area - Extensive bibliography supporting each chapter - Detailed index - Up-to-date diagrams and full colour illustrations

Advanced Hot-Gas Desulfurization Sorbents

Advanced Hot-Gas Desulfurization Sorbents PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 8

Get Book Here

Book Description
Integrated gasification combined cycle (IGCC) power systems are being advanced worldwide for generating electricity from coal due to their superior environmental performance, economics, and efficiency in comparison to conventional coal-based power plants. Hot gas cleanup offers the potential for higher plant thermal efficiencies and lower cost. A key subsystem of hot-gas cleanup is hot-gas desulfurization using regenerable sorbents. Sorbents based on zinc oxide are currently the leading candidates and are being developed for moving- and fluidized- bed reactor applications. Zinc oxide sorbents can effectively reduce the H2S in coal gas to around 10 ppm levels and can be regenerated for multicycle operation. However, all current first-generation leading sorbents undergo significant loss of reactivity with cycling, as much as 50% or greater loss in only 25-50 cycles. Stability of the hot-gas desulfurization sorbent over 100's of cycles is essential for improved IGCC economics over conventional power plants. This project aims to develop hot-gas cleanup sorbents for relatively lower temperature applications, 343 to 538°C with emphasis on the temperature range from 400 to 500°. Recent economic evaluations have indicated that the thermal efficiency of IGCC systems increases rapidly with the temperature of hot-gas cleanup up to 350°C and then very slowly as the temperature is increased further. This suggests that the temperature severity of the hot-gas cleanup devices can be reduced without significant loss of thermal efficiency. The objective of this study is to develop attrition-resistant advanced hot-gas desulfurization sorbents which show stable and high sulfidation reactivity at 343°C (650°F) to 538°C(1OOO°F) and regenerability at lower temperatures than leading first generation sorbents.

Enhanced Durability of High-temperature Desulfurization Sorbents for Moving-bed Applications. Option 2 Program

Enhanced Durability of High-temperature Desulfurization Sorbents for Moving-bed Applications. Option 2 Program PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 51

Get Book Here

Book Description
One of the most advantageous configurations of the integrated gasification combined cycle (IGCC) power system is coupling it with a hot gas cleanup for the more efficient production of electric power in an environmentally acceptable manner. In conventional gasification cleanup systems, closely heat exchangers are necessary to cool down the fuel gases for cleaning, sometimes as low as 200--300°F, and to reheat the gases prior to injection into the turbine. The result is significant losses in efficiency for the overall power cycle. High-temperature coal gas cleanup in the IGCC system can be operated near 1000°F or higher, i.e., at conditions compatible with the gasifier and turbine components, resulting is a more efficient overall system. GE is developing a moving-bed, high-temperature desulfurization system for IGCC power systems in which mixed-metal oxides are currently being used as desulfurization sorbents. The objective of this contract is to identify and test fabrication methods and sorbent chemical compositions that enhance the long-term chemical reactivity and mechanical durability of zinc ferrite and other novel sorbents for moving-bed, high-temperature desulfurization of coal-derived gases. Zinc ferrite was studied under the base program of this contract. In the next phase of this program novel sorbents, particularly zinc titanate-based sorbents, are being studied under the remaining optional programs. This topical report summarizes only the work performed under the Option 2 program. In the course of carrying out the program, more than 25 zinc titanate formulations have been prepared and characterized to identify formulations exhibiting enhanced properties over the baseline zinc titanate formulation selected by the US Department of Energy.

Development of Advanced Hot-gas Desulfurization Sorbents. Final Report

Development of Advanced Hot-gas Desulfurization Sorbents. Final Report PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 85

Get Book Here

Book Description
The objective of this project was to develop hot-gas desulfurization sorbent formulations for relatively lower temperature application, with emphasis on the temperature range from 343--538 C. The candidate sorbents include highly dispersed mixed metal oxides of zinc, iron, copper, cobalt, nickel and molybdenum. The specific objective was to develop suitable sorbents, that would have high and stable surface area and are sufficiently reactive and regenerable at the relatively lower temperatures of interest in this work. Stability of surface area during regeneration was achieved by adding stabilizers. To prevent sulfation, catalyst additives that promote the light-off of the regeneration reaction at lower temperature was considered. Another objective of this study was to develop attrition-resistant advanced hot-gas desulfurization sorbents which show stable and high sulfidation reactivity at 343 to 538 C and regenerability at lower temperatures than leading first generation sorbents.

Enhanced Durability of Desulfurization Sorbents for Fluidized-bed Applications

Enhanced Durability of Desulfurization Sorbents for Fluidized-bed Applications PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 188

Get Book Here

Book Description
To extend the operating temperature range and further improve the durability of fluidizable sorbents, zinc titanate, another leading regenerable sorbent, was selected for development in the later part of this project. A number of zinc titanate formulations were prepared in the 50 to 300 [mu]m range using granulation and spray drying methods. Important sorbent preparation variables investigated included zinc to titanium ratio, binder type, binder amount, and various chemical additives such as cobalt and molybdenum. A number of sorbents selected on the basis of screening tests were subjected to bench-scale testing for 10 cycles at high temperature, high pressure (HTHP) conditions using the reactor system designed and constructed during the base program. This reactor system is capable of operation either as a 2.0 in. or 3.0 in. I.D. bubbling bed and is rated up to 20 atm operation at 871[degrees]C. Bench-scale testing variables included sorbent type, temperature (550 to 750[degrees]C), gas type (KRW or Texaco gasifier gas), steam content of coal gas, and fluidizing gas velocity (6 to 15 cm/s). The sorbents prepared by spray drying showed poor performance in terms of attrition resistance and chemical reactivity. On the other hand, the granulation method proved to be very successful. For example, a highly attrition-resistant zinc titanate formulation, ZT-4, prepared by granulation exhibited virtually no zinc loss and demonstrated a constant high reactivity and sulfur capacity over 10 cycles, i.e., approximately a 60 percent capacity utilization, with Texaco gas at 750[degrees]C, 15 cm/s fluidizing velocity and 15 atm pressure. The commercial potential of the granulation method for zinc titanate manufacture was demonstrated by preparing two 80 lb batches of sorbent with zinc to titanium mol ratios of 0.8 and 1.5.