Author: TeresaW. Haynes
Publisher: Routledge
ISBN: 1351454641
Category : Mathematics
Languages : en
Pages : 519
Book Description
""Presents the latest in graph domination by leading researchers from around the world-furnishing known results, open research problems, and proof techniques. Maintains standardized terminology and notation throughout for greater accessibility. Covers recent developments in domination in graphs and digraphs, dominating functions, combinatorial problems on chessboards, and more.
Domination in Graphs
Author: TeresaW. Haynes
Publisher: Routledge
ISBN: 1351454641
Category : Mathematics
Languages : en
Pages : 519
Book Description
""Presents the latest in graph domination by leading researchers from around the world-furnishing known results, open research problems, and proof techniques. Maintains standardized terminology and notation throughout for greater accessibility. Covers recent developments in domination in graphs and digraphs, dominating functions, combinatorial problems on chessboards, and more.
Publisher: Routledge
ISBN: 1351454641
Category : Mathematics
Languages : en
Pages : 519
Book Description
""Presents the latest in graph domination by leading researchers from around the world-furnishing known results, open research problems, and proof techniques. Maintains standardized terminology and notation throughout for greater accessibility. Covers recent developments in domination in graphs and digraphs, dominating functions, combinatorial problems on chessboards, and more.
Total Domination in Graphs
Author: Michael A. Henning
Publisher: Springer Science & Business Media
ISBN: 1461465257
Category : Mathematics
Languages : en
Pages : 184
Book Description
Total Domination in Graphs gives a clear understanding of this topic to any interested reader who has a modest background in graph theory. This book provides and explores the fundamentals of total domination in graphs. Some of the topics featured include the interplay between total domination in graphs and transversals in hypergraphs, and the association with total domination in graphs and diameter-2-critical graphs. Several proofs are included in this text which enables readers to acquaint themselves with a toolbox of proof techniques and ideas with which to attack open problems in the field. This work is an excellent resource for students interested in beginning their research in this field. Additionally, established researchers will find the book valuable to have as it contains the latest developments and open problems.
Publisher: Springer Science & Business Media
ISBN: 1461465257
Category : Mathematics
Languages : en
Pages : 184
Book Description
Total Domination in Graphs gives a clear understanding of this topic to any interested reader who has a modest background in graph theory. This book provides and explores the fundamentals of total domination in graphs. Some of the topics featured include the interplay between total domination in graphs and transversals in hypergraphs, and the association with total domination in graphs and diameter-2-critical graphs. Several proofs are included in this text which enables readers to acquaint themselves with a toolbox of proof techniques and ideas with which to attack open problems in the field. This work is an excellent resource for students interested in beginning their research in this field. Additionally, established researchers will find the book valuable to have as it contains the latest developments and open problems.
Dominating Sets in Planar Graphs
Author: Fedor V. Fomin
Publisher:
ISBN:
Category :
Languages : en
Pages : 48
Book Description
Publisher:
ISBN:
Category :
Languages : en
Pages : 48
Book Description
Connected Dominating Set: Theory and Applications
Author: Ding-Zhu Du
Publisher: Springer Science & Business Media
ISBN: 1461452422
Category : Business & Economics
Languages : en
Pages : 206
Book Description
The connected dominating set has been a classic subject studied in graph theory since 1975. Since the 1990s, it has been found to have important applications in communication networks, especially in wireless networks, as a virtual backbone. Motivated from those applications, many papers have been published in the literature during last 15 years. Now, the connected dominating set has become a hot research topic in computer science. In this book, we are going to collect recent developments on the connected dominating set, which presents the state of the art in the study of connected dominating sets. The book consists of 16 chapters. Except the 1st one, each chapter is devoted to one problem, and consists of three parts, motivation and overview, problem complexity analysis, and approximation algorithm designs, which will lead the reader to see clearly about the background, formulation, existing important research results, and open problems. Therefore, this would be a very valuable reference book for researchers in computer science and operations research, especially in areas of theoretical computer science, computer communication networks, combinatorial optimization, and discrete mathematics.
Publisher: Springer Science & Business Media
ISBN: 1461452422
Category : Business & Economics
Languages : en
Pages : 206
Book Description
The connected dominating set has been a classic subject studied in graph theory since 1975. Since the 1990s, it has been found to have important applications in communication networks, especially in wireless networks, as a virtual backbone. Motivated from those applications, many papers have been published in the literature during last 15 years. Now, the connected dominating set has become a hot research topic in computer science. In this book, we are going to collect recent developments on the connected dominating set, which presents the state of the art in the study of connected dominating sets. The book consists of 16 chapters. Except the 1st one, each chapter is devoted to one problem, and consists of three parts, motivation and overview, problem complexity analysis, and approximation algorithm designs, which will lead the reader to see clearly about the background, formulation, existing important research results, and open problems. Therefore, this would be a very valuable reference book for researchers in computer science and operations research, especially in areas of theoretical computer science, computer communication networks, combinatorial optimization, and discrete mathematics.
Fundamentals of Domination in Graphs
Author: Teresa W. Haynes
Publisher: CRC Press
ISBN: 1482246589
Category : Mathematics
Languages : en
Pages : 465
Book Description
"Provides the first comprehensive treatment of theoretical, algorithmic, and application aspects of domination in graphs-discussing fundamental results and major research accomplishments in an easy-to-understand style. Includes chapters on domination algorithms and NP-completeness as well as frameworks for domination."
Publisher: CRC Press
ISBN: 1482246589
Category : Mathematics
Languages : en
Pages : 465
Book Description
"Provides the first comprehensive treatment of theoretical, algorithmic, and application aspects of domination in graphs-discussing fundamental results and major research accomplishments in an easy-to-understand style. Includes chapters on domination algorithms and NP-completeness as well as frameworks for domination."
Graphs & Digraphs, Fourth Edition
Author: Gary Chartrand
Publisher: Chapman and Hall/CRC
ISBN: 9780412987212
Category : Mathematics
Languages : en
Pages : 432
Book Description
This is the third edition of the popular text on graph theory. As in previous editions, the text presents graph theory as a mathematical discipline and emphasizes clear exposition and well-written proofs. New in this edition are expanded treatments of graph decomposition and external graph theory, a study of graph vulnerability and domination, and introductions to voltage graphs, graph labelings, and the probabilistic method in graph theory.
Publisher: Chapman and Hall/CRC
ISBN: 9780412987212
Category : Mathematics
Languages : en
Pages : 432
Book Description
This is the third edition of the popular text on graph theory. As in previous editions, the text presents graph theory as a mathematical discipline and emphasizes clear exposition and well-written proofs. New in this edition are expanded treatments of graph decomposition and external graph theory, a study of graph vulnerability and domination, and introductions to voltage graphs, graph labelings, and the probabilistic method in graph theory.
Kernelization
Author: Fedor V. Fomin
Publisher: Cambridge University Press
ISBN: 1107057760
Category : Computers
Languages : en
Pages : 531
Book Description
A complete introduction to recent advances in preprocessing analysis, or kernelization, with extensive examples using a single data set.
Publisher: Cambridge University Press
ISBN: 1107057760
Category : Computers
Languages : en
Pages : 531
Book Description
A complete introduction to recent advances in preprocessing analysis, or kernelization, with extensive examples using a single data set.
Exact Exponential Algorithms
Author: Fedor V. Fomin
Publisher: Springer Science & Business Media
ISBN: 3642165338
Category : Mathematics
Languages : en
Pages : 208
Book Description
For a long time computer scientists have distinguished between fast and slow algo rithms. Fast (or good) algorithms are the algorithms that run in polynomial time, which means that the number of steps required for the algorithm to solve a problem is bounded by some polynomial in the length of the input. All other algorithms are slow (or bad). The running time of slow algorithms is usually exponential. This book is about bad algorithms. There are several reasons why we are interested in exponential time algorithms. Most of us believe that there are many natural problems which cannot be solved by polynomial time algorithms. The most famous and oldest family of hard problems is the family of NP complete problems. Most likely there are no polynomial time al gorithms solving these hard problems and in the worst case scenario the exponential running time is unavoidable. Every combinatorial problem is solvable in ?nite time by enumerating all possi ble solutions, i. e. by brute force search. But is brute force search always unavoid able? De?nitely not. Already in the nineteen sixties and seventies it was known that some NP complete problems can be solved signi?cantly faster than by brute force search. Three classic examples are the following algorithms for the TRAVELLING SALESMAN problem, MAXIMUM INDEPENDENT SET, and COLORING.
Publisher: Springer Science & Business Media
ISBN: 3642165338
Category : Mathematics
Languages : en
Pages : 208
Book Description
For a long time computer scientists have distinguished between fast and slow algo rithms. Fast (or good) algorithms are the algorithms that run in polynomial time, which means that the number of steps required for the algorithm to solve a problem is bounded by some polynomial in the length of the input. All other algorithms are slow (or bad). The running time of slow algorithms is usually exponential. This book is about bad algorithms. There are several reasons why we are interested in exponential time algorithms. Most of us believe that there are many natural problems which cannot be solved by polynomial time algorithms. The most famous and oldest family of hard problems is the family of NP complete problems. Most likely there are no polynomial time al gorithms solving these hard problems and in the worst case scenario the exponential running time is unavoidable. Every combinatorial problem is solvable in ?nite time by enumerating all possi ble solutions, i. e. by brute force search. But is brute force search always unavoid able? De?nitely not. Already in the nineteen sixties and seventies it was known that some NP complete problems can be solved signi?cantly faster than by brute force search. Three classic examples are the following algorithms for the TRAVELLING SALESMAN problem, MAXIMUM INDEPENDENT SET, and COLORING.
Sparsity
Author: Jaroslav Nešetřil
Publisher: Springer Science & Business Media
ISBN: 3642278752
Category : Mathematics
Languages : en
Pages : 472
Book Description
This is the first book devoted to the systematic study of sparse graphs and sparse finite structures. Although the notion of sparsity appears in various contexts and is a typical example of a hard to define notion, the authors devised an unifying classification of general classes of structures. This approach is very robust and it has many remarkable properties. For example the classification is expressible in many different ways involving most extremal combinatorial invariants. This study of sparse structures found applications in such diverse areas as algorithmic graph theory, complexity of algorithms, property testing, descriptive complexity and mathematical logic (homomorphism preservation,fixed parameter tractability and constraint satisfaction problems). It should be stressed that despite of its generality this approach leads to linear (and nearly linear) algorithms. Jaroslav Nešetřil is a professor at Charles University, Prague; Patrice Ossona de Mendez is a CNRS researcher et EHESS, Paris. This book is related to the material presented by the first author at ICM 2010.
Publisher: Springer Science & Business Media
ISBN: 3642278752
Category : Mathematics
Languages : en
Pages : 472
Book Description
This is the first book devoted to the systematic study of sparse graphs and sparse finite structures. Although the notion of sparsity appears in various contexts and is a typical example of a hard to define notion, the authors devised an unifying classification of general classes of structures. This approach is very robust and it has many remarkable properties. For example the classification is expressible in many different ways involving most extremal combinatorial invariants. This study of sparse structures found applications in such diverse areas as algorithmic graph theory, complexity of algorithms, property testing, descriptive complexity and mathematical logic (homomorphism preservation,fixed parameter tractability and constraint satisfaction problems). It should be stressed that despite of its generality this approach leads to linear (and nearly linear) algorithms. Jaroslav Nešetřil is a professor at Charles University, Prague; Patrice Ossona de Mendez is a CNRS researcher et EHESS, Paris. This book is related to the material presented by the first author at ICM 2010.
Every Planar Map is Four Colorable
Author: Kenneth I. Appel
Publisher: American Mathematical Soc.
ISBN: 0821851039
Category : Mathematics
Languages : en
Pages : 760
Book Description
In this volume, the authors present their 1972 proof of the celebrated Four Color Theorem in a detailed but self-contained exposition accessible to a general mathematical audience. An emended version of the authors' proof of the theorem, the book contains the full text of the supplements and checklists, which originally appeared on microfiche. The thiry-page introduction, intended for nonspecialists, provides some historical background of the theorem and details of the authors' proof. In addition, the authors have added an appendix which treats in much greater detail the argument for situations in which reducible configurations are immersed rather than embedded in triangulations. This result leads to a proof that four coloring can be accomplished in polynomial time.
Publisher: American Mathematical Soc.
ISBN: 0821851039
Category : Mathematics
Languages : en
Pages : 760
Book Description
In this volume, the authors present their 1972 proof of the celebrated Four Color Theorem in a detailed but self-contained exposition accessible to a general mathematical audience. An emended version of the authors' proof of the theorem, the book contains the full text of the supplements and checklists, which originally appeared on microfiche. The thiry-page introduction, intended for nonspecialists, provides some historical background of the theorem and details of the authors' proof. In addition, the authors have added an appendix which treats in much greater detail the argument for situations in which reducible configurations are immersed rather than embedded in triangulations. This result leads to a proof that four coloring can be accomplished in polynomial time.