Author: Steven Galovich
Publisher: Cengage Learning
ISBN:
Category : Mathematics
Languages : en
Pages : 344
Book Description
Prepare for success in mathematics with DOING MATHEMATICS: AN INTRODUCTION TO PROOFS AND PROBLEM SOLVING! By discussing proof techniques, problem solving methods, and the understanding of mathematical ideas, this mathematics text gives you a solid foundation from which to build while providing you with the tools you need to succeed. Numerous examples, problem solving methods, and explanations make exam preparation easy.
Doing Mathematics
Author: Steven Galovich
Publisher: Cengage Learning
ISBN:
Category : Mathematics
Languages : en
Pages : 344
Book Description
Prepare for success in mathematics with DOING MATHEMATICS: AN INTRODUCTION TO PROOFS AND PROBLEM SOLVING! By discussing proof techniques, problem solving methods, and the understanding of mathematical ideas, this mathematics text gives you a solid foundation from which to build while providing you with the tools you need to succeed. Numerous examples, problem solving methods, and explanations make exam preparation easy.
Publisher: Cengage Learning
ISBN:
Category : Mathematics
Languages : en
Pages : 344
Book Description
Prepare for success in mathematics with DOING MATHEMATICS: AN INTRODUCTION TO PROOFS AND PROBLEM SOLVING! By discussing proof techniques, problem solving methods, and the understanding of mathematical ideas, this mathematics text gives you a solid foundation from which to build while providing you with the tools you need to succeed. Numerous examples, problem solving methods, and explanations make exam preparation easy.
Rediscovering Mathematics
Author: Shai Simonson
Publisher: American Mathematical Soc.
ISBN: 1470451204
Category : Education
Languages : en
Pages : 241
Book Description
Rediscovering Mathematics is aimed at a general audience and addresses the question of how best to teach and study mathematics. The book attempts to bring the exciting and dynamic world of mathematics to a non-technical audience. With so much focus today on how best to educate the new generation and make mathematics less rote and more interactive, this book is an eye-opening experience for many people who suffered with dull math teachers and curricula. Rediscovering Mathematics is an eclectic collection of mathematical topics and puzzles aimed at talented youngsters and inquisitive adults who want to expand their view of mathematics. By focusing on problem solving, and discouraging rote memorization, the book shows how to learn and teach mathematics through investigation, experimentation, and discovery. Rediscovering Mathematics is also an excellent text for training math teachers at all levels. Topics range in difficulty and cover a wide range of historical periods, with some examples demonstrating how to uncover mathematics in everyday life, including: number theory and its application to secure communication over the Internet, the algebraic and combinatorial work of a medieval mathematician Rabbi, and applications of probability to sports, casinos, and gambling. Rediscovering Mathematics provides a fresh view of mathematics for those who already like the subject, and offers a second chance for those who think they don't.
Publisher: American Mathematical Soc.
ISBN: 1470451204
Category : Education
Languages : en
Pages : 241
Book Description
Rediscovering Mathematics is aimed at a general audience and addresses the question of how best to teach and study mathematics. The book attempts to bring the exciting and dynamic world of mathematics to a non-technical audience. With so much focus today on how best to educate the new generation and make mathematics less rote and more interactive, this book is an eye-opening experience for many people who suffered with dull math teachers and curricula. Rediscovering Mathematics is an eclectic collection of mathematical topics and puzzles aimed at talented youngsters and inquisitive adults who want to expand their view of mathematics. By focusing on problem solving, and discouraging rote memorization, the book shows how to learn and teach mathematics through investigation, experimentation, and discovery. Rediscovering Mathematics is also an excellent text for training math teachers at all levels. Topics range in difficulty and cover a wide range of historical periods, with some examples demonstrating how to uncover mathematics in everyday life, including: number theory and its application to secure communication over the Internet, the algebraic and combinatorial work of a medieval mathematician Rabbi, and applications of probability to sports, casinos, and gambling. Rediscovering Mathematics provides a fresh view of mathematics for those who already like the subject, and offers a second chance for those who think they don't.
Children Doing Mathematics
Author: Terezinha Nunes
Publisher: Wiley-Blackwell
ISBN: 9780631184720
Category : Psychology
Languages : en
Pages : 292
Book Description
Children Doing Mathematics provides a reliable and up to date review of the substantial recent work in children' mathematical understanding. The authors also present important new research on children's understanding of number, measurement, arithmetic operation and fractions both in and out of school. The central theme of Children Doing Mathematics is that there are crucial conditions for children's mathematical learning. Firstly, children have to come to grips with conventional mathematical systems. Secondly, but equally important, they have to be able to present mathematical knowledge in a way that solves problems. The book also discusses how mathematical activities and knowledge involve much more than what is currently viewed as mathematics in the school curriculum. Most recent work illustrates how children can be successful in mathematical activities outside school whereas they fail in similar activities in the classroom. Through these two underlying themes the authors bring together discussions on conventional mathematical learning and on real life mathematical success. In so doing, they also highlight new and better ways of analysing children's abilities and of advancing their learning in school.
Publisher: Wiley-Blackwell
ISBN: 9780631184720
Category : Psychology
Languages : en
Pages : 292
Book Description
Children Doing Mathematics provides a reliable and up to date review of the substantial recent work in children' mathematical understanding. The authors also present important new research on children's understanding of number, measurement, arithmetic operation and fractions both in and out of school. The central theme of Children Doing Mathematics is that there are crucial conditions for children's mathematical learning. Firstly, children have to come to grips with conventional mathematical systems. Secondly, but equally important, they have to be able to present mathematical knowledge in a way that solves problems. The book also discusses how mathematical activities and knowledge involve much more than what is currently viewed as mathematics in the school curriculum. Most recent work illustrates how children can be successful in mathematical activities outside school whereas they fail in similar activities in the classroom. Through these two underlying themes the authors bring together discussions on conventional mathematical learning and on real life mathematical success. In so doing, they also highlight new and better ways of analysing children's abilities and of advancing their learning in school.
The Beauty of Doing Mathematics
Author: Serge Lang
Publisher: Springer Science & Business Media
ISBN: 9780387961491
Category : Mathematics
Languages : en
Pages : 148
Book Description
If someone told you that mathematics is quite beautiful, you might be surprised. But you should know that some people do mathematics all their lives, and create mathematics, just as a composer creates music. Usually, every time a mathematician solves a problem, this gives rise to many oth ers, new and just as beautiful as the one which was solved. Of course, often these problems are quite difficult, and as in other disciplines can be understood only by those who have studied the subject with some depth, and know the subject well. In 1981, Jean Brette, who is responsible for the Mathematics Section of the Palais de la Decouverte (Science Museum) in Paris, invited me to give a conference at the Palais. I had never given such a conference before, to a non-mathematical public. Here was a challenge: could I communicate to such a Saturday afternoon audience what it means to do mathematics, and why one does mathematics? By "mathematics" I mean pure mathematics. This doesn't mean that pure math is better than other types of math, but I and a number of others do pure mathematics, and it's about them that I am now concerned. Math has a bad reputation, stemming from the most elementary levels. The word is in fact used in many different contexts. First, I had to explain briefly these possible contexts, and the one with which I wanted to deal.
Publisher: Springer Science & Business Media
ISBN: 9780387961491
Category : Mathematics
Languages : en
Pages : 148
Book Description
If someone told you that mathematics is quite beautiful, you might be surprised. But you should know that some people do mathematics all their lives, and create mathematics, just as a composer creates music. Usually, every time a mathematician solves a problem, this gives rise to many oth ers, new and just as beautiful as the one which was solved. Of course, often these problems are quite difficult, and as in other disciplines can be understood only by those who have studied the subject with some depth, and know the subject well. In 1981, Jean Brette, who is responsible for the Mathematics Section of the Palais de la Decouverte (Science Museum) in Paris, invited me to give a conference at the Palais. I had never given such a conference before, to a non-mathematical public. Here was a challenge: could I communicate to such a Saturday afternoon audience what it means to do mathematics, and why one does mathematics? By "mathematics" I mean pure mathematics. This doesn't mean that pure math is better than other types of math, but I and a number of others do pure mathematics, and it's about them that I am now concerned. Math has a bad reputation, stemming from the most elementary levels. The word is in fact used in many different contexts. First, I had to explain briefly these possible contexts, and the one with which I wanted to deal.
Doing Math in Morning Meeting
Author: Andy Dousis
Publisher: Center for Responsive Schools, Inc.
ISBN: 1892989379
Category : Education
Languages : en
Pages : 257
Book Description
Bring joy and energy to math learning without adding to your already-packed schedule! Here are 150 fun and engaging math activities suitable for kindergartners to 5th graders, with math-themed ideas for all four Morning Meeting components: greeting, group activity, sharing, and morning message. Use these games, songs, chants, hands-on experiments, and more to inspire students' interest in math and help them practice skills. Each activity includes easy how-to steps; relevant NCTM content and process standards; specific math skills addressed; materials needed (all require few or no materials); tips on preparing students for success; math vocabulary to emphasize; and variations and extensions.
Publisher: Center for Responsive Schools, Inc.
ISBN: 1892989379
Category : Education
Languages : en
Pages : 257
Book Description
Bring joy and energy to math learning without adding to your already-packed schedule! Here are 150 fun and engaging math activities suitable for kindergartners to 5th graders, with math-themed ideas for all four Morning Meeting components: greeting, group activity, sharing, and morning message. Use these games, songs, chants, hands-on experiments, and more to inspire students' interest in math and help them practice skills. Each activity includes easy how-to steps; relevant NCTM content and process standards; specific math skills addressed; materials needed (all require few or no materials); tips on preparing students for success; math vocabulary to emphasize; and variations and extensions.
Doing Math with Python
Author: Amit Saha
Publisher: No Starch Press
ISBN: 1593277199
Category : Computers
Languages : en
Pages : 265
Book Description
Doing Math with Python shows you how to use Python to delve into high school–level math topics like statistics, geometry, probability, and calculus. You’ll start with simple projects, like a factoring program and a quadratic-equation solver, and then create more complex projects once you’ve gotten the hang of things. Along the way, you’ll discover new ways to explore math and gain valuable programming skills that you’ll use throughout your study of math and computer science. Learn how to: –Describe your data with statistics, and visualize it with line graphs, bar charts, and scatter plots –Explore set theory and probability with programs for coin flips, dicing, and other games of chance –Solve algebra problems using Python’s symbolic math functions –Draw geometric shapes and explore fractals like the Barnsley fern, the Sierpinski triangle, and the Mandelbrot set –Write programs to find derivatives and integrate functions Creative coding challenges and applied examples help you see how you can put your new math and coding skills into practice. You’ll write an inequality solver, plot gravity’s effect on how far a bullet will travel, shuffle a deck of cards, estimate the area of a circle by throwing 100,000 "darts" at a board, explore the relationship between the Fibonacci sequence and the golden ratio, and more. Whether you’re interested in math but have yet to dip into programming or you’re a teacher looking to bring programming into the classroom, you’ll find that Python makes programming easy and practical. Let Python handle the grunt work while you focus on the math. Uses Python 3
Publisher: No Starch Press
ISBN: 1593277199
Category : Computers
Languages : en
Pages : 265
Book Description
Doing Math with Python shows you how to use Python to delve into high school–level math topics like statistics, geometry, probability, and calculus. You’ll start with simple projects, like a factoring program and a quadratic-equation solver, and then create more complex projects once you’ve gotten the hang of things. Along the way, you’ll discover new ways to explore math and gain valuable programming skills that you’ll use throughout your study of math and computer science. Learn how to: –Describe your data with statistics, and visualize it with line graphs, bar charts, and scatter plots –Explore set theory and probability with programs for coin flips, dicing, and other games of chance –Solve algebra problems using Python’s symbolic math functions –Draw geometric shapes and explore fractals like the Barnsley fern, the Sierpinski triangle, and the Mandelbrot set –Write programs to find derivatives and integrate functions Creative coding challenges and applied examples help you see how you can put your new math and coding skills into practice. You’ll write an inequality solver, plot gravity’s effect on how far a bullet will travel, shuffle a deck of cards, estimate the area of a circle by throwing 100,000 "darts" at a board, explore the relationship between the Fibonacci sequence and the golden ratio, and more. Whether you’re interested in math but have yet to dip into programming or you’re a teacher looking to bring programming into the classroom, you’ll find that Python makes programming easy and practical. Let Python handle the grunt work while you focus on the math. Uses Python 3
Doing Mathematics: Convention, Subject, Calculation, Analogy (2nd Edition)
Author: Martin H Krieger
Publisher: World Scientific
ISBN: 9814571865
Category : Mathematics
Languages : en
Pages : 492
Book Description
Doing Mathematics discusses some ways mathematicians and mathematical physicists do their work and the subject matters they uncover and fashion. The conventions they adopt, the subject areas they delimit, what they can prove and calculate about the physical world, and the analogies they discover and employ, all depend on the mathematics — what will work out and what won't. The cases studied include the central limit theorem of statistics, the sound of the shape of a drum, the connections between algebra and topology, and the series of rigorous proofs of the stability of matter. The many and varied solutions to the two-dimensional Ising model of ferromagnetism make sense as a whole when they are seen in an analogy developed by Richard Dedekind in the 1880s to algebraicize Riemann's function theory; by Robert Langlands' program in number theory and representation theory; and, by the analogy between one-dimensional quantum mechanics and two-dimensional classical statistical mechanics. In effect, we begin to see 'an identity in a manifold presentation of profiles,' as the phenomenologists would say.This second edition deepens the particular examples; it describe the practical role of mathematical rigor; it suggests what might be a mathematician's philosophy of mathematics; and, it shows how an 'ugly' first proof or derivation embodies essential features, only to be appreciated after many subsequent proofs. Natural scientists and mathematicians trade physical models and abstract objects, remaking them to suit their needs, discovering new roles for them as in the recent case of the Painlevé transcendents, the Tracy-Widom distribution, and Toeplitz determinants. And mathematics has provided the models and analogies, the ordinary language, for describing the everyday world, the structure of cities, or God's infinitude.
Publisher: World Scientific
ISBN: 9814571865
Category : Mathematics
Languages : en
Pages : 492
Book Description
Doing Mathematics discusses some ways mathematicians and mathematical physicists do their work and the subject matters they uncover and fashion. The conventions they adopt, the subject areas they delimit, what they can prove and calculate about the physical world, and the analogies they discover and employ, all depend on the mathematics — what will work out and what won't. The cases studied include the central limit theorem of statistics, the sound of the shape of a drum, the connections between algebra and topology, and the series of rigorous proofs of the stability of matter. The many and varied solutions to the two-dimensional Ising model of ferromagnetism make sense as a whole when they are seen in an analogy developed by Richard Dedekind in the 1880s to algebraicize Riemann's function theory; by Robert Langlands' program in number theory and representation theory; and, by the analogy between one-dimensional quantum mechanics and two-dimensional classical statistical mechanics. In effect, we begin to see 'an identity in a manifold presentation of profiles,' as the phenomenologists would say.This second edition deepens the particular examples; it describe the practical role of mathematical rigor; it suggests what might be a mathematician's philosophy of mathematics; and, it shows how an 'ugly' first proof or derivation embodies essential features, only to be appreciated after many subsequent proofs. Natural scientists and mathematicians trade physical models and abstract objects, remaking them to suit their needs, discovering new roles for them as in the recent case of the Painlevé transcendents, the Tracy-Widom distribution, and Toeplitz determinants. And mathematics has provided the models and analogies, the ordinary language, for describing the everyday world, the structure of cities, or God's infinitude.
Algebra: Chapter 0
Author: Paolo Aluffi
Publisher: American Mathematical Soc.
ISBN: 147046571X
Category : Education
Languages : en
Pages : 738
Book Description
Algebra: Chapter 0 is a self-contained introduction to the main topics of algebra, suitable for a first sequence on the subject at the beginning graduate or upper undergraduate level. The primary distinguishing feature of the book, compared to standard textbooks in algebra, is the early introduction of categories, used as a unifying theme in the presentation of the main topics. A second feature consists of an emphasis on homological algebra: basic notions on complexes are presented as soon as modules have been introduced, and an extensive last chapter on homological algebra can form the basis for a follow-up introductory course on the subject. Approximately 1,000 exercises both provide adequate practice to consolidate the understanding of the main body of the text and offer the opportunity to explore many other topics, including applications to number theory and algebraic geometry. This will allow instructors to adapt the textbook to their specific choice of topics and provide the independent reader with a richer exposure to algebra. Many exercises include substantial hints, and navigation of the topics is facilitated by an extensive index and by hundreds of cross-references.
Publisher: American Mathematical Soc.
ISBN: 147046571X
Category : Education
Languages : en
Pages : 738
Book Description
Algebra: Chapter 0 is a self-contained introduction to the main topics of algebra, suitable for a first sequence on the subject at the beginning graduate or upper undergraduate level. The primary distinguishing feature of the book, compared to standard textbooks in algebra, is the early introduction of categories, used as a unifying theme in the presentation of the main topics. A second feature consists of an emphasis on homological algebra: basic notions on complexes are presented as soon as modules have been introduced, and an extensive last chapter on homological algebra can form the basis for a follow-up introductory course on the subject. Approximately 1,000 exercises both provide adequate practice to consolidate the understanding of the main body of the text and offer the opportunity to explore many other topics, including applications to number theory and algebraic geometry. This will allow instructors to adapt the textbook to their specific choice of topics and provide the independent reader with a richer exposure to algebra. Many exercises include substantial hints, and navigation of the topics is facilitated by an extensive index and by hundreds of cross-references.
Classroom-Ready Rich Math Tasks, Grades 4-5
Author: Beth McCord Kobett
Publisher: Corwin Press
ISBN: 1071841068
Category : Education
Languages : en
Pages : 348
Book Description
Detailed plans for helping elementary students experience deep mathematical learning Do you work tirelessly to make your math lessons meaningful, challenging, accessible, and engaging? Do you spend hours you don’t have searching for, adapting, and creating tasks to provide rich experiences for your students that supplement your mathematics curriculum? Help has arrived! Classroom Ready-Rich Math Tasks for Grades 4-5 details more than 50 research- and standards-aligned, high-cognitive-demand tasks that will have your students doing deep-problem-based learning. These ready-to-implement, engaging tasks connect skills, concepts and practices, while encouraging students to reason, problem-solve, discuss, explore multiple solution pathways, connect multiple representations, and justify their thinking. They help students monitor their own thinking and connect the mathematics they know to new situations. In other words, these tasks allow students to truly do mathematics! Written with a strengths-based lens and an attentiveness to all students, this guide includes: • Complete task-based lessons, referencing mathematics standards and practices, vocabulary, and materials • Downloadable planning tools, student resource pages, and thoughtful questions, and formative assessment prompts • Guidance on preparing, launching, facilitating, and reflecting on each task • Notes on access and equity, focusing on students’ strengths, productive struggle, and distance or alternative learning environments. With concluding guidance on adapting or creating additional rich tasks for your students, this guide will help you give all of your students the deepest, most enriching and engaging mathematics learning experience possible.
Publisher: Corwin Press
ISBN: 1071841068
Category : Education
Languages : en
Pages : 348
Book Description
Detailed plans for helping elementary students experience deep mathematical learning Do you work tirelessly to make your math lessons meaningful, challenging, accessible, and engaging? Do you spend hours you don’t have searching for, adapting, and creating tasks to provide rich experiences for your students that supplement your mathematics curriculum? Help has arrived! Classroom Ready-Rich Math Tasks for Grades 4-5 details more than 50 research- and standards-aligned, high-cognitive-demand tasks that will have your students doing deep-problem-based learning. These ready-to-implement, engaging tasks connect skills, concepts and practices, while encouraging students to reason, problem-solve, discuss, explore multiple solution pathways, connect multiple representations, and justify their thinking. They help students monitor their own thinking and connect the mathematics they know to new situations. In other words, these tasks allow students to truly do mathematics! Written with a strengths-based lens and an attentiveness to all students, this guide includes: • Complete task-based lessons, referencing mathematics standards and practices, vocabulary, and materials • Downloadable planning tools, student resource pages, and thoughtful questions, and formative assessment prompts • Guidance on preparing, launching, facilitating, and reflecting on each task • Notes on access and equity, focusing on students’ strengths, productive struggle, and distance or alternative learning environments. With concluding guidance on adapting or creating additional rich tasks for your students, this guide will help you give all of your students the deepest, most enriching and engaging mathematics learning experience possible.
Mathematics of Optimization: How to do Things Faster
Author: Steven J. Miller
Publisher: American Mathematical Soc.
ISBN: 1470441144
Category : Business & Economics
Languages : en
Pages : 353
Book Description
Optimization Theory is an active area of research with numerous applications; many of the books are designed for engineering classes, and thus have an emphasis on problems from such fields. Covering much of the same material, there is less emphasis on coding and detailed applications as the intended audience is more mathematical. There are still several important problems discussed (especially scheduling problems), but there is more emphasis on theory and less on the nuts and bolts of coding. A constant theme of the text is the “why” and the “how” in the subject. Why are we able to do a calculation efficiently? How should we look at a problem? Extensive effort is made to motivate the mathematics and isolate how one can apply ideas/perspectives to a variety of problems. As many of the key algorithms in the subject require too much time or detail to analyze in a first course (such as the run-time of the Simplex Algorithm), there are numerous comparisons to simpler algorithms which students have either seen or can quickly learn (such as the Euclidean algorithm) to motivate the type of results on run-time savings.
Publisher: American Mathematical Soc.
ISBN: 1470441144
Category : Business & Economics
Languages : en
Pages : 353
Book Description
Optimization Theory is an active area of research with numerous applications; many of the books are designed for engineering classes, and thus have an emphasis on problems from such fields. Covering much of the same material, there is less emphasis on coding and detailed applications as the intended audience is more mathematical. There are still several important problems discussed (especially scheduling problems), but there is more emphasis on theory and less on the nuts and bolts of coding. A constant theme of the text is the “why” and the “how” in the subject. Why are we able to do a calculation efficiently? How should we look at a problem? Extensive effort is made to motivate the mathematics and isolate how one can apply ideas/perspectives to a variety of problems. As many of the key algorithms in the subject require too much time or detail to analyze in a first course (such as the run-time of the Simplex Algorithm), there are numerous comparisons to simpler algorithms which students have either seen or can quickly learn (such as the Euclidean algorithm) to motivate the type of results on run-time savings.