Distributional Integral Transforms

Distributional Integral Transforms PDF Author: P.K. Banerjee
Publisher: Scientific Publishers
ISBN: 9387741605
Category : Mathematics
Languages : en
Pages : 181

Get Book Here

Book Description
The present Learned Research Work is an exhaustive survey and researches carried out by the authors, which led to the theories of distributions, generalized functions and transforms involving them, which includes interesting results and the fundamental concepts of the youngest generalization of Schwartz theory of distributions, the Boehmians. The tempered distribution and utilizations have been described, which provide suitable platforms for the generalizations of Fourier transforms, Stieltjes and Mellin transforms. To overcome the Fourier series this work includes wavelet transform, for which meticulous extensive study of the existing literature has been produced including recent researches carried out by the authors. This compilation, in the form of the present book, is believed to be of help to researchers in the field of distribution and transform analysis and, may even be treated as the reference book to post graduate students.

Distributional Integral Transforms

Distributional Integral Transforms PDF Author: P.K. Banerjee
Publisher: Scientific Publishers
ISBN: 9387741605
Category : Mathematics
Languages : en
Pages : 181

Get Book Here

Book Description
The present Learned Research Work is an exhaustive survey and researches carried out by the authors, which led to the theories of distributions, generalized functions and transforms involving them, which includes interesting results and the fundamental concepts of the youngest generalization of Schwartz theory of distributions, the Boehmians. The tempered distribution and utilizations have been described, which provide suitable platforms for the generalizations of Fourier transforms, Stieltjes and Mellin transforms. To overcome the Fourier series this work includes wavelet transform, for which meticulous extensive study of the existing literature has been produced including recent researches carried out by the authors. This compilation, in the form of the present book, is believed to be of help to researchers in the field of distribution and transform analysis and, may even be treated as the reference book to post graduate students.

Distributions in the Physical and Engineering Sciences, Volume 1

Distributions in the Physical and Engineering Sciences, Volume 1 PDF Author: Alexander I. Saichev
Publisher: Springer
ISBN: 3319979582
Category : Mathematics
Languages : en
Pages : 347

Get Book Here

Book Description
Distributions in the Physical and Engineering Sciences is a comprehensive exposition on analytic methods for solving science and engineering problems which is written from the unifying viewpoint of distribution theory and enriched with many modern topics which are important to practitioners and researchers. The goal of the book is to give the reader, specialist and non-specialist usable and modern mathematical tools in their research and analysis. This new text is intended for graduate students and researchers in applied mathematics, physical sciences and engineering. The careful explanations, accessible writing style, and many illustrations/examples also make it suitable for use as a self-study reference by anyone seeking greater understanding and proficiency in the problem solving methods presented. The book is ideal for a general scientific and engineering audience, yet it is mathematically precise. The present, softcover reprint is designed to make this classic textbook available to a wider audience.

Integral Transforms of Generalized Functions and Their Applications

Integral Transforms of Generalized Functions and Their Applications PDF Author: Ram Shankar Pathak
Publisher: Routledge
ISBN: 135156269X
Category : History
Languages : en
Pages : 432

Get Book Here

Book Description
For those who have a background in advanced calculus, elementary topology and functional analysis - from applied mathematicians and engineers to physicists - researchers and graduate students alike - this work provides a comprehensive analysis of the many important integral transforms and renders particular attention to all of the technical aspects of the subject. The author presents the last two decades of research and includes important results from other works.

A Guide to Distribution Theory and Fourier Transforms

A Guide to Distribution Theory and Fourier Transforms PDF Author: Robert S. Strichartz
Publisher: World Scientific
ISBN: 9789812384300
Category : Mathematics
Languages : en
Pages : 238

Get Book Here

Book Description
This important book provides a concise exposition of the basic ideas of the theory of distribution and Fourier transforms and its application to partial differential equations. The author clearly presents the ideas, precise statements of theorems, and explanations of ideas behind the proofs. Methods in which techniques are used in applications are illustrated, and many problems are included. The book also introduces several significant recent topics, including pseudodifferential operators, wave front sets, wavelets, and quasicrystals. Background mathematical prerequisites have been kept to a minimum, with only a knowledge of multidimensional calculus and basic complex variables needed to fully understand the concepts in the book.A Guide to Distribution Theory and Fourier Transforms can serve as a textbook for parts of a course on Applied Analysis or Methods of Mathematical Physics, and in fact it is used that way at Cornell.

Integral Transforms of Generalized Functions

Integral Transforms of Generalized Functions PDF Author: Brychkov
Publisher: CRC Press
ISBN: 9782881247057
Category : Mathematics
Languages : en
Pages : 362

Get Book Here

Book Description
English translation (from revised and enlarged versions of the Russian editions of 1977 and 1984) of a reference work which makes available to engineers, physicists and applied mathematicians theoretical and tabular material pertaining to certain extensions of standard integral transform techniques. Diverse transforms are touched upon, but the emphasis (particularly in the tables) is on generalized Fourier and Laplace transforms. Some multi-dimensional results are presented. Expensive, but nicely produced, and redundant with nothing standard to the reference shelves of mathematical libraries. (NW) Annotation copyrighted by Book News, Inc., Portland, OR

Distribution, Integral Transforms and Applications

Distribution, Integral Transforms and Applications PDF Author: W. Kierat
Publisher: CRC Press
ISBN: 9780415269582
Category : Mathematics
Languages : en
Pages : 162

Get Book Here

Book Description
The theory of distributions is most often presented as L. Schwartz originally presented it: as a theory of the duality of topological vector spaces. Although this is a sound approach, it can be difficult, demanding deep prior knowledge of functional analysis. The more elementary treatments that are available often consider distributions as limits of sequences of functions, but these usually present the theoretical foundations in a form too simplified for practical applications. Distributions, Integral Transforms and Applications offers an approachable introduction to the theory of distributions and integral transforms that uses Schwartz's description of distributions as linear continous forms on topological vector spaces. The authors use the theory of the Lebesgue integral as a fundamental tool in the proofs of many theorems and develop the theory from its beginnings to the point of proving many of the deep, important theorems, such as the Schwartz kernel theorem and the Malgrange-Ehrenpreis theorem. They clearly demonstrate how the theory of distributions can be used in cases such as Fourier analysis, when the methods of classical analysis are insufficient. Accessible to anyone who has completed a course in advanced calculus, this treatment emphasizes the remarkable connections between distributional theory, classical analysis, and the theory of differential equations and leads directly to applications in various branches of mathematics.

The Hilbert Transform of Schwartz Distributions and Applications

The Hilbert Transform of Schwartz Distributions and Applications PDF Author: J. N. Pandey
Publisher: John Wiley & Sons
ISBN: 1118030753
Category : Mathematics
Languages : en
Pages : 284

Get Book Here

Book Description
This book provides a modern and up-to-date treatment of the Hilberttransform of distributions and the space of periodic distributions.Taking a simple and effective approach to a complex subject, thisvolume is a first-rate textbook at the graduate level as well as anextremely useful reference for mathematicians, applied scientists,and engineers. The author, a leading authority in the field, shares with thereader many new results from his exhaustive research on the Hilberttransform of Schwartz distributions. He describes in detail how touse the Hilbert transform to solve theoretical and physicalproblems in a wide range of disciplines; these include aerofoilproblems, dispersion relations, high-energy physics, potentialtheory problems, and others. Innovative at every step, J. N. Pandey provides a new definitionfor the Hilbert transform of periodic functions, which isespecially useful for those working in the area of signalprocessing for computational purposes. This definition could alsoform the basis for a unified theory of the Hilbert transform ofperiodic, as well as nonperiodic, functions. The Hilbert transform and the approximate Hilbert transform ofperiodic functions are worked out in detail for the first time inbook form and can be used to solve Laplace's equation with periodicboundary conditions. Among the many theoretical results proved inthis book is a Paley-Wiener type theorem giving thecharacterization of functions and generalized functions whoseFourier transforms are supported in certain orthants of Rn. Placing a strong emphasis on easy application of theory andtechniques, the book generalizes the Hilbert problem in higherdimensions and solves it in function spaces as well as ingeneralized function spaces. It simplifies the one-dimensionaltransform of distributions; provides solutions to thedistributional Hilbert problems and singular integral equations;and covers the intrinsic definition of the testing function spacesand its topology. The book includes exercises and review material for all majortopics, and incorporates classical and distributional problems intothe main text. Thorough and accessible, it explores new ways to usethis important integral transform, and reinforces its value in bothmathematical research and applied science. The Hilbert transform made accessible with many new formulas anddefinitions Written by today's foremost expert on the Hilbert transform ofgeneralized functions, this combined text and reference covers theHilbert transform of distributions and the space of periodicdistributions. The author provides a consistently accessibletreatment of this advanced-level subject and teaches techniquesthat can be easily applied to theoretical and physical problemsencountered by mathematicians, applied scientists, and graduatestudents in mathematics and engineering. Introducing many new inversion formulas that have been developedand applied by the author and his research associates, the book: * Provides solutions to the distributional Hilbert problem andsingular integral equations * Focuses on the Hilbert transform of Schwartz distributions,giving intrinsic definitions of the space H(D) and its topology * Covers the Paley-Wiener theorem and provides many importanttheoretical results of importance to research mathematicians * Provides the characterization of functions and generalizedfunctions whose Fourier transforms are supported in certainorthants of Rn * Offers a new definition of the Hilbert transform of the periodicfunction that can be used for computational purposes in signalprocessing * Develops the theory of the Hilbert transform of periodicdistributions and the approximate Hilbert transform of periodicdistributions * Provides exercises at the end of each chapter--useful toprofessors in planning assignments, tests, and problems

GENERALIZED INTEGRAL TRANSFORMS OF DISTRIBUTIONS

GENERALIZED INTEGRAL TRANSFORMS OF DISTRIBUTIONS PDF Author: Dr. B. B. Waphare
Publisher: Lulu Publication
ISBN: 1684742080
Category : Art
Languages : en
Pages : 16

Get Book Here

Book Description
1.1 Introduction In recent years, integral transforms have become essential working tools of every engineer and applied scientist. The Laplace transform, which undoubtedly is the most familiar example, is being suited to solving boundary value problems. The classical methods of solution of initial and boundary value problems in physics and engineering sciences have their roots in Fourier’s pioneering work. An alternative approach through integral transforms methods emerged primarily through Heaviside’s efforts on operational techniques. In addition to being of great theoretical interest to mathematicians, integral transform methods have been found to provide easy and effective ways of solving a variety of problems arising in engineering and physical science. The use of integral transforms is somewhat analogous to that of logarithms. That is, a problem involving multiplication or division can be reduced to one involving simple processes addition or subtraction by taking logarithms. For almost two centuries the method of function transformations has been used successfully in solving many problems in engineering, mathematical physics and applied mathematics. Function transformations include, but are not limited to the well-known technique of linear integral transformations. A function transformation simply means a mathematical operation through which a real or complex valued function f is transformed into an other F, or into a sequence of numbers, or more generally into a set of data. Since its birth in the 1780’s in the work of the great mathematician Laplace, on probability theory, the theory of function transformations has flourished and continues to do so. In the last few years, in particular, it has received a great impetus from the advent of wavelets. Not only is the wavelet transform an example of how practical function transformations can be, but it is also an example of a transformation that has gone beyond what it was designed to do as a technique. It has contributed to the development of modern mathematical analysis just as the Fourier transformation contributed to the advancement of classical analysis in the earliest years of the nineteenth century.

Analytic Functions Integral Transforms Differential Equations

Analytic Functions Integral Transforms Differential Equations PDF Author: Filippo Gazzola
Publisher: Società Editrice Esculapio
ISBN: 887488561X
Category : Mathematics
Languages : en
Pages : 522

Get Book Here

Book Description
Differential equations play a relevant role in many disciplines and provide powerful tools for analysis and modeling in applied sciences. The book contains several classical and modern methods for the study of ordinary and partial differential equations. A broad space is reserved to Fourier and Laplace transforms together with their applications to the solution of boundary value and/or initial value problems for differential equations. Basic prerequisites concerning analytic functions of complex variable and Lp spaces are synthetically presented in the first two chapters. Techniques based on integral transforms and Fourier series are presented in specific chapters, first in the easier framework of integrable functions and later in the general framework of distributions. The less elementary distributional context allows to deal also with differential equations with highly irregular data and pulse signals. The theory is introduced concisely, while learning of miscellaneous methods is achieved step-by-step through the proposal of many exercises of increasing difficulty. Additional recap exercises are collected in dedicated sections. Several tables for easy reference of main formulas are available at the end of the book. The presentation is oriented mainly to students of Schools in Engineering, Sciences and Economy. The partition of various topics in several self-contained and independent sections allows an easy splitting in at least two didactic modules: one at undergraduate level, the other at graduate level. This text is the English translation of the Third Edition of the Italian book “Analisi Complessa, Trasformate, Equazioni Differenziali" published by Esculapio in 2015.

The Selected Works of Roderick S C Wong

The Selected Works of Roderick S C Wong PDF Author: Dan Dai
Publisher: World Scientific
ISBN: 9814656062
Category : Mathematics
Languages : en
Pages : 1557

Get Book Here

Book Description
This collection, in three volumes, presents the scientific achievements of Roderick S C Wong, spanning 45 years of his career. It provides a comprehensive overview of the author's work which includes significant discoveries and pioneering contributions, such as his deep analysis on asymptotic approximations of integrals and uniform asymptotic expansions of orthogonal polynomials and special functions; his important contributions to perturbation methods for ordinary differential equations and difference equations; and his advocation of the Riemann–Hilbert approach for global asymptotics of orthogonal polynomials. The book is an essential source of reference for mathematicians, statisticians, engineers, and physicists. It is also a suitable reading for graduate students and interested senior year undergraduate students. Contents:Volume 1:The Asymptotic Behaviour of μ(z, β,α)A Generalization of Watson's LemmaLinear Equations in Infinite MatricesAsymptotic Solutions of Linear Volterra Integral Equations with Singular KernelsOn Infinite Systems of Linear Differential EquationsError Bounds for Asymptotic Expansions of HankelExplicit Error Terms for Asymptotic Expansions of StieltjesExplicit Error Terms for Asymptotic Expansions of MellinAsymptotic Expansion of Multiple Fourier TransformsExact Remainders for Asymptotic Expansions of FractionalAsymptotic Expansion of the Hilbert TransformError Bounds for Asymptotic Expansions of IntegralsDistributional Derivation of an Asymptotic ExpansionOn a Method of Asymptotic Evaluation of Multiple IntegralsAsymptotic Expansion of the Lebesgue Constants Associated with Polynomial InterpolationQuadrature Formulas for Oscillatory Integral TransformsGeneralized Mellin Convolutions and Their Asymptotic Expansions,A Uniform Asymptotic Expansion of the Jacobi Polynomials with Error BoundsAsymptotic Expansion of a Multiple IntegralAsymptotic Expansion of a Double Integral with a Curve of Stationary PointsSzegö's Conjecture on Lebesgue Constants for Legendre SeriesUniform Asymptotic Expansions of Laguerre PolynomialsTransformation to Canonical Form for Uniform Asymptotic ExpansionsMultidimensional Stationary Phase Approximation: Boundary Stationary PointTwo-Dimensional Stationary Phase Approximation: Stationary Point at a CornerAsymptotic Expansions for Second-Order Linear Difference EquationsAsymptotic Expansions for Second-Order Linear Difference Equations, IIAsymptotic Behaviour of the Fundamental Solution to ∂u/∂t = –(–Δ)muA Bernstein-Type Inequality for the Jacobi PolynomialError Bounds for Asymptotic Expansions of Laplace ConvolutionsVolume 2:Asymptotic Behavior of the Pollaczek Polynomials and Their ZerosJustification of the Stationary Phase Approximation in Time-Domain AsymptoticsAsymptotic Expansions of the Generalized Bessel PolynomialsUniform Asymptotic Expansions for Meixner Polynomials"Best Possible" Upper and Lower Bounds for the Zeros of the Bessel Function Jν(x)Justification of a Perturbation Approximation of the Klein–Gordon EquationSmoothing of Stokes's Discontinuity for the Generalized Bessel Function. IIUniform Asymptotic Expansions of a Double Integral: Coalescence of Two Stationary PointsUniform Asymptotic Formula for Orthogonal Polynomials with Exponential WeightOn the Asymptotics of the Meixner–Pollaczek Polynomials and Their ZerosGevrey Asymptotics and Stieltjes Transforms of Algebraically Decaying FunctionsExponential Asymptotics of the Mittag–Leffler FunctionOn the Ackerberg–O'Malley ResonanceAsymptotic Expansions for Second-Order Linear Difference Equations with a Turning PointOn a Two-Point Boundary-Value Problem with Spurious SolutionsShooting Method for Nonlinear Singularly Perturbed Boundary-Value ProblemsVolume 3:Asymptotic Expansion of the Krawtchouk Polynomials and Their ZerosOn a Uniform Treatment of Darboux's MethodLinear Difference Equations with Transition PointsUniform Asymptotics for Jacobi Polynomials with Varying Large Negative Parameters — A Riemann–Hilbert ApproachUniform Asymptotics of the Stieltjes–Wigert Polynomials via the Riemann–Hilbert ApproachA Singularly Perturbed Boundary-Value Problem Arising in Phase TransitionsOn the Number of Solutions to Carrier's ProblemAsymptotic Expansions for Riemann–Hilbert ProblemsOn the Connection Formulas of the Third Painlevé TranscendentHyperasymptotic Expansions of the Modified Bessel Function of the Third Kind of Purely Imaginary OrderGlobal Asymptotics for Polynomials Orthogonal with Exponential Quartic WeightThe Riemann–Hilbert Approach to Global Asymptotics of Discrete Orthogonal Polynomials with Infinite NodesGlobal Asymptotics of the Meixner PolynomialsAsymptotics of Orthogonal Polynomials via Recurrence RelationsUniform Asymptotic Expansions for the Discrete Chebyshev PolynomialsGlobal Asymptotics of the Hahn PolynomialsGlobal Asymptotics of Stieltjes–Wigert Polynomials Readership: Undergraduates, gradudates and researchers in the areas of asymptotic approximations of integrals, singular perturbation theory, difference equations and Riemann–Hilbert approach. Key Features:This book provides a broader viewpoint of asymptoticsIt contains about half of the papers that Roderick Wong has written on asymptoticsIt demonstrates how analysis is used to make some formal results mathematically rigorousThis collection presents the scientific achievements of the authorKeywords:Asymptotic Analysis;Perturbation Method;Special Functions;Orthogonal Polynomials;Integral Transforms;Integral Equations;Ordinary Differential Equations;Difference Equations;Riemann–Hilbert Problem