Distribution of Massless and Massive Particles in Turbulent Flows

Distribution of Massless and Massive Particles in Turbulent Flows PDF Author:
Publisher:
ISBN: 9783866642652
Category :
Languages : en
Pages : 211

Get Book Here

Book Description

Distribution of Massless and Massive Particles in Turbulent Flows

Distribution of Massless and Massive Particles in Turbulent Flows PDF Author:
Publisher:
ISBN: 9783866642652
Category :
Languages : en
Pages : 211

Get Book Here

Book Description


Particles in Turbulent Flows

Particles in Turbulent Flows PDF Author: Leonid I. Zaichik
Publisher: John Wiley & Sons
ISBN: 3527626263
Category : Science
Languages : en
Pages : 318

Get Book Here

Book Description
The only work available to treat the theory of turbulent flow with suspended particles, this book also includes a section on simulation methods, comparing the model results obtained with the PDF method to those obtained with other techniques, such as DNS, LES and RANS. Written by experienced scientists with background in oil and gas processing, this book is applicable to a wide range of industries -- from the petrol industry and industrial chemistry to food and water processing.

Interaction of Massive Particles with Turbulence

Interaction of Massive Particles with Turbulence PDF Author: Jamaludin Mohd Yusof
Publisher:
ISBN:
Category : Particles
Languages : en
Pages : 320

Get Book Here

Book Description


Turbulent Particle-Laden Gas Flows

Turbulent Particle-Laden Gas Flows PDF Author: Aleksei Y. Varaksin
Publisher: Springer Science & Business Media
ISBN: 3540680543
Category : Science
Languages : en
Pages : 204

Get Book Here

Book Description
This book presents results of experimental and theoretical studies of "gas-solid particles" turbulent two-phase flows. It analyzes the characteristics of heterogeneous flows in channels (pipes), as well as those in the vicinity of the critical points of bodies subjected to flow and in the boundary layer developing on their surface. Coverage also treats in detail problems of physical simulation of turbulent gas flows which carry solid particles.

Deposition and Distribution of Particles in Turbulent Flow

Deposition and Distribution of Particles in Turbulent Flow PDF Author: Thomas Hugh Kneen
Publisher:
ISBN:
Category : Turbulence
Languages : en
Pages : 210

Get Book Here

Book Description


The dynamics of finite-size settling particles

The dynamics of finite-size settling particles PDF Author: Doychev, Todor
Publisher: KIT Scientific Publishing
ISBN: 3731503077
Category : Engineering (General). Civil engineering (General)
Languages : en
Pages : 272

Get Book Here

Book Description
This book contributes to the fundamental understanding of the physical mechanisms that take place in pseudo turbulent particulate flows. In the present work we have considered the sedimentation of large numbers of spherical rigid particles in an initially quiescent flow field. We have performed direct numerical simulations employing an immersed boundary method for the representation of the fluid-solid interface. The results evidence that depending on the particle settling regime (i.e. Galileo number and particle-to-fluid density ratio) the particles may exhibit strong inhomogeneous spatial distribution. It is found that the particles are preferentially located in regions with downward fluid motion. The particles inside clusters experience larger settling velocities than the average. The flow in all flow cases is observed to exhibit characteristic features of pseudo-turbulence. The particle-induced flow field is further found to be highly anisotropic with dominant vertical components. The results indicate that, in the present flow configurations, the collective and mobility effects play significant role for the particle and fluid motion.

Motion and Distribution of Micro-sized Solid Particles in Turbulent Gas Flow

Motion and Distribution of Micro-sized Solid Particles in Turbulent Gas Flow PDF Author: Ning Zhang
Publisher:
ISBN:
Category :
Languages : en
Pages : 334

Get Book Here

Book Description


An Informal Introduction to Turbulence

An Informal Introduction to Turbulence PDF Author: A. Tsinober
Publisher: Springer Science & Business Media
ISBN: 030648384X
Category : Science
Languages : en
Pages : 344

Get Book Here

Book Description
To Turbulence by ARKADY TSINOBER Department of Fluid Mechanics, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel KLUWER ACADEMIC PUBLISHERS NEW YORK, BOSTON, DORDRECHT, LONDON, MOSCOW eBookISBN: 0-306-48384-X Print ISBN: 1-4020-0110-X ©2004 Kluwer Academic Publishers NewYork, Boston, Dordrecht, London, Moscow Print ©2001 Kluwer Academic Publishers Dordrecht All rights reserved No part of this eBook maybe reproducedor transmitted inanyform or byanymeans, electronic, mechanical, recording, or otherwise, without written consent from the Publisher Created in the United States of America Visit Kluwer Online at: http://kluweronline. com and Kluwer's eBookstoreat: http://ebooks. kluweronline. com TO My WITS TABLE OF CONTENTS 1 INTRODUCTION 1 Brief history 1 1. 1 1. 2 Nature and major qualitative universal features of turbulent flows 2 1. 2. 1 Representative examples of turbulent flows 2 1. 2. 2 In lieu of definition: major qualitative universal f- tures of turbulent flows 15 1. 3 Why turbulence is so impossibly difficult? The three N's 19 On the Navier-Stokes equations 19 1. 3. 1 1. 3. 2 On the nature of the problem 21 1. 3. 3 Nonlinearity 22 1. 3. 4 Noninegrability 22 Nonlocality 1. 3. 5 23 1. 3. 6 On physics of turbulence 24 1. 3. 7 On statistical theories 24 1. 4 Outline of the following material 25 1. 5 In lieu of summary 26 2 ORIGINS OF TURBULENCE 27 2. 1 Instability 27 2. 2 Transition to turbulence versus routes to chaos 29 2.

The Origin of Turbulence in Near-Wall Flows

The Origin of Turbulence in Near-Wall Flows PDF Author: A.V. Boiko
Publisher: Springer Science & Business Media
ISBN: 3662047659
Category : Technology & Engineering
Languages : en
Pages : 273

Get Book Here

Book Description
The Origin of Species Charles Darwin The origin of turbulence in fluids is a long-standing problem and has been the focus of research for decades due to its great importance in a variety of engineering applications. Furthermore, the study of the origin of turbulence is part of the fundamental physical problem of turbulence description and the philosophical problem of determinism and chaos. At the end of the nineteenth century, Reynolds and Rayleigh conjectured that the reason of the transition of laminar flow to the 'sinuous' state is in stability which results in amplification of wavy disturbances and breakdown of the laminar regime. Heisenberg (1924) was the founder of linear hydrody namic stability theory. The first calculations of boundary layer stability were fulfilled in pioneer works of Tollmien (1929) and Schlichting (1932, 1933). Later Taylor (1936) hypothesized that the transition to turbulence is initi ated by free-stream oscillations inducing local separations near wall. Up to the 1940s, skepticism of the stability theory predominated, in particular due to the experimental results of Dryden (1934, 1936). Only the experiments of Schubauer and Skramstad (1948) revealed the determining role of insta bility waves in the transition. Now it is well established that the transition to turbulence in shear flows at small and moderate levels of environmental disturbances occurs through development of instability waves in the initial laminar flow. In Chapter 1 we start with the fundamentals of stability theory, employing results of the early studies and recent advances.

The Theory of Homogeneous Turbulence

The Theory of Homogeneous Turbulence PDF Author: G. K. Batchelor
Publisher: Cambridge University Press
ISBN: 9780521041171
Category : Mathematics
Languages : en
Pages : 216

Get Book Here

Book Description
This is a reissue of Professor Batchelor's text on the theory of turbulent motion, which was first published by Cambridge Unviersity Press in 1953. It continues to be widely referred to in the professional literature of fluid mechanics, but has not been available for several years. This classic account includes an introduction to the study of homogeneous turbulence, including its mathematic representation and kinematics. Linear problems, such as the randomly-perturbed harmonic oscillator and turbulent flow through a wire gauze, are then treated. The author also presents the general dynamics of decay, universal equilibrium theory, and the decay of energy-containing eddies. There is a renewed interest in turbulent motion, which finds applications in atmospheric physics, fluid mechanics, astrophysics, and planetary science.