Author: J. S. Maritz
Publisher: Springer
ISBN:
Category : Mathematics
Languages : en
Pages : 282
Book Description
Basic concepts in distribution-free methods; One-sample location problems; Miscellaneous one-sample problems; Two-sample problems; Straight-line regression; Multiple regression and general linear models; Bivariate problems; Appendix; Bibliography.
Distribution-Free Statistical Methods
Author: J. S. Maritz
Publisher: Springer
ISBN:
Category : Mathematics
Languages : en
Pages : 282
Book Description
Basic concepts in distribution-free methods; One-sample location problems; Miscellaneous one-sample problems; Two-sample problems; Straight-line regression; Multiple regression and general linear models; Bivariate problems; Appendix; Bibliography.
Publisher: Springer
ISBN:
Category : Mathematics
Languages : en
Pages : 282
Book Description
Basic concepts in distribution-free methods; One-sample location problems; Miscellaneous one-sample problems; Two-sample problems; Straight-line regression; Multiple regression and general linear models; Bivariate problems; Appendix; Bibliography.
Distribution-Free Statistical Methods, Second Edition
Author: J.S. Maritz
Publisher: CRC Press
ISBN: 1000153002
Category : Mathematics
Languages : en
Pages : 279
Book Description
Distribution-free statistical methods enable users to make statistical inferences with minimum assumptions about the population in question. They are widely used, especially in the areas of medical and psychological research. This new edition is aimed at senior undergraduate and graduate level. It also includes a discussion of new techniques that have arisen as a result of improvements in statistical computing. Interest in estimation techniques has particularly grown, and this section of the book has been expanded accordingly. Finally, Distribution-Free Statistical Methods includes more examples with actual data sets appearing in the text.
Publisher: CRC Press
ISBN: 1000153002
Category : Mathematics
Languages : en
Pages : 279
Book Description
Distribution-free statistical methods enable users to make statistical inferences with minimum assumptions about the population in question. They are widely used, especially in the areas of medical and psychological research. This new edition is aimed at senior undergraduate and graduate level. It also includes a discussion of new techniques that have arisen as a result of improvements in statistical computing. Interest in estimation techniques has particularly grown, and this section of the book has been expanded accordingly. Finally, Distribution-Free Statistical Methods includes more examples with actual data sets appearing in the text.
Statistical Methods
Author: Rudolf J. Freund
Publisher: Elsevier
ISBN: 0080498221
Category : Mathematics
Languages : en
Pages : 694
Book Description
This broad text provides a complete overview of most standard statistical methods, including multiple regression, analysis of variance, experimental design, and sampling techniques. Assuming a background of only two years of high school algebra, this book teaches intelligent data analysis and covers the principles of good data collection. * Provides a complete discussion of analysis of data including estimation, diagnostics, and remedial actions * Examples contain graphical illustration for ease of interpretation * Intended for use with almost any statistical software * Examples are worked to a logical conclusion, including interpretation of results * A complete Instructor's Manual is available to adopters
Publisher: Elsevier
ISBN: 0080498221
Category : Mathematics
Languages : en
Pages : 694
Book Description
This broad text provides a complete overview of most standard statistical methods, including multiple regression, analysis of variance, experimental design, and sampling techniques. Assuming a background of only two years of high school algebra, this book teaches intelligent data analysis and covers the principles of good data collection. * Provides a complete discussion of analysis of data including estimation, diagnostics, and remedial actions * Examples contain graphical illustration for ease of interpretation * Intended for use with almost any statistical software * Examples are worked to a logical conclusion, including interpretation of results * A complete Instructor's Manual is available to adopters
Statistical Methods in Water Resources
Author: D.R. Helsel
Publisher: Elsevier
ISBN: 0080875084
Category : Science
Languages : en
Pages : 539
Book Description
Data on water quality and other environmental issues are being collected at an ever-increasing rate. In the past, however, the techniques used by scientists to interpret this data have not progressed as quickly. This is a book of modern statistical methods for analysis of practical problems in water quality and water resources.The last fifteen years have seen major advances in the fields of exploratory data analysis (EDA) and robust statistical methods. The 'real-life' characteristics of environmental data tend to drive analysis towards the use of these methods. These advances are presented in a practical and relevant format. Alternate methods are compared, highlighting the strengths and weaknesses of each as applied to environmental data. Techniques for trend analysis and dealing with water below the detection limit are topics covered, which are of great interest to consultants in water-quality and hydrology, scientists in state, provincial and federal water resources, and geological survey agencies.The practising water resources scientist will find the worked examples using actual field data from case studies of environmental problems, of real value. Exercises at the end of each chapter enable the mechanics of the methodological process to be fully understood, with data sets included on diskette for easy use. The result is a book that is both up-to-date and immediately relevant to ongoing work in the environmental and water sciences.
Publisher: Elsevier
ISBN: 0080875084
Category : Science
Languages : en
Pages : 539
Book Description
Data on water quality and other environmental issues are being collected at an ever-increasing rate. In the past, however, the techniques used by scientists to interpret this data have not progressed as quickly. This is a book of modern statistical methods for analysis of practical problems in water quality and water resources.The last fifteen years have seen major advances in the fields of exploratory data analysis (EDA) and robust statistical methods. The 'real-life' characteristics of environmental data tend to drive analysis towards the use of these methods. These advances are presented in a practical and relevant format. Alternate methods are compared, highlighting the strengths and weaknesses of each as applied to environmental data. Techniques for trend analysis and dealing with water below the detection limit are topics covered, which are of great interest to consultants in water-quality and hydrology, scientists in state, provincial and federal water resources, and geological survey agencies.The practising water resources scientist will find the worked examples using actual field data from case studies of environmental problems, of real value. Exercises at the end of each chapter enable the mechanics of the methodological process to be fully understood, with data sets included on diskette for easy use. The result is a book that is both up-to-date and immediately relevant to ongoing work in the environmental and water sciences.
Nonparametric Statistical Methods For Complete and Censored Data
Author: M.M. Desu
Publisher: CRC Press
ISBN: 9781584883197
Category : Mathematics
Languages : en
Pages : 392
Book Description
Balancing the "cookbook" approach of some texts with the more mathematical approach of others, Nonparametric Statistical Methods for Complete and Censored Data introduces commonly used non-parametric methods for complete data and extends those methods to right censored data analysis. Whenever possible, the authors derive their methodology from the general theory of statistical inference and introduce the concepts intuitively for students with minimal backgrounds. Derivations and mathematical details are relegated to appendices at the end of each chapter, which allows students to easily proceed through each chapter without becoming bogged down in a lot of mathematics. In addition to the nonparametric methods for analyzing complete and censored data, the book covers optimal linear rank statistics, clinical equivalence, analysis of block designs, and precedence tests. To make the material more accessible and practical, the authors use SAS programs to illustrate the various methods included. Exercises in each chapter, SAS code, and a clear, accessible presentation make this an outstanding text for a one-semester senior or graduate-level course in nonparametric statistics for students in a variety of disciplines, from statistics and biostatistics to business, psychology, and the social scientists. Prerequisites: Students will need a solid background in calculus and a two-semester course in mathematical statistics.
Publisher: CRC Press
ISBN: 9781584883197
Category : Mathematics
Languages : en
Pages : 392
Book Description
Balancing the "cookbook" approach of some texts with the more mathematical approach of others, Nonparametric Statistical Methods for Complete and Censored Data introduces commonly used non-parametric methods for complete data and extends those methods to right censored data analysis. Whenever possible, the authors derive their methodology from the general theory of statistical inference and introduce the concepts intuitively for students with minimal backgrounds. Derivations and mathematical details are relegated to appendices at the end of each chapter, which allows students to easily proceed through each chapter without becoming bogged down in a lot of mathematics. In addition to the nonparametric methods for analyzing complete and censored data, the book covers optimal linear rank statistics, clinical equivalence, analysis of block designs, and precedence tests. To make the material more accessible and practical, the authors use SAS programs to illustrate the various methods included. Exercises in each chapter, SAS code, and a clear, accessible presentation make this an outstanding text for a one-semester senior or graduate-level course in nonparametric statistics for students in a variety of disciplines, from statistics and biostatistics to business, psychology, and the social scientists. Prerequisites: Students will need a solid background in calculus and a two-semester course in mathematical statistics.
Statistical Methods
Author: Cheryl Ann Willard
Publisher: Routledge
ISBN: 0429523157
Category : Psychology
Languages : en
Pages : 367
Book Description
Statistical Methods: An Introduction to Basic Statistical Concepts and Analysis, Second Edition is a textbook designed for students with no prior training in statistics. It provides a solid background of the core statistical concepts taught in most introductory statistics textbooks. Mathematical proofs are deemphasized in favor of careful explanations of statistical constructs. The text begins with coverage of descriptive statistics such as measures of central tendency and variability, then moves on to inferential statistics. Transitional chapters on z-scores, probability, and sampling distributions pave the way to understanding the logic of hypothesis testing and the inferential tests that follow. Hypothesis testing is taught through a four-step process. These same four steps are used throughout the text for the other statistical tests presented including t tests, one- and two-way ANOVAs, chi-square, and correlation. A chapter on nonparametric tests is also provided as an alternative when the requirements cannot be met for parametric tests. Because the same logical framework and sequential steps are used throughout the text, a consistency is provided that allows students to gradually master the concepts. Their learning is enhanced further with the inclusion of "thought questions" and practice problems integrated throughout the chapters. New to the second edition: Chapters on factorial analysis of variance and non-parametric techniques for all data Additional and updated chapter exercises for students to test and demonstrate their learning Full instructor resources: test bank questions, Powerpoint slides, and an Instructor Manual
Publisher: Routledge
ISBN: 0429523157
Category : Psychology
Languages : en
Pages : 367
Book Description
Statistical Methods: An Introduction to Basic Statistical Concepts and Analysis, Second Edition is a textbook designed for students with no prior training in statistics. It provides a solid background of the core statistical concepts taught in most introductory statistics textbooks. Mathematical proofs are deemphasized in favor of careful explanations of statistical constructs. The text begins with coverage of descriptive statistics such as measures of central tendency and variability, then moves on to inferential statistics. Transitional chapters on z-scores, probability, and sampling distributions pave the way to understanding the logic of hypothesis testing and the inferential tests that follow. Hypothesis testing is taught through a four-step process. These same four steps are used throughout the text for the other statistical tests presented including t tests, one- and two-way ANOVAs, chi-square, and correlation. A chapter on nonparametric tests is also provided as an alternative when the requirements cannot be met for parametric tests. Because the same logical framework and sequential steps are used throughout the text, a consistency is provided that allows students to gradually master the concepts. Their learning is enhanced further with the inclusion of "thought questions" and practice problems integrated throughout the chapters. New to the second edition: Chapters on factorial analysis of variance and non-parametric techniques for all data Additional and updated chapter exercises for students to test and demonstrate their learning Full instructor resources: test bank questions, Powerpoint slides, and an Instructor Manual
Distribution-Free Statistical Methods
Author: J. S. Maritz
Publisher: Springer
ISBN:
Category : Mathematics
Languages : en
Pages : 282
Book Description
Basic concepts in distribution-free methods; One-sample location problems; Miscellaneous one-sample problems; Two-sample problems; Straight-line regression; Multiple regression and general linear models; Bivariate problems; Appendix; Bibliography.
Publisher: Springer
ISBN:
Category : Mathematics
Languages : en
Pages : 282
Book Description
Basic concepts in distribution-free methods; One-sample location problems; Miscellaneous one-sample problems; Two-sample problems; Straight-line regression; Multiple regression and general linear models; Bivariate problems; Appendix; Bibliography.
Exact Statistical Methods for Data Analysis
Author: Samaradasa Weerahandi
Publisher: Springer Science & Business Media
ISBN: 1461208254
Category : Mathematics
Languages : en
Pages : 343
Book Description
Now available in paperback, this book covers some recent developments in statistical inference. It provides methods applicable in problems involving nuisance parameters such as those encountered in comparing two exponential distributions or in ANOVA without the assumption of equal error variances. The generalized procedures are shown to be more powerful in detecting significant experimental results and in avoiding misleading conclusions.
Publisher: Springer Science & Business Media
ISBN: 1461208254
Category : Mathematics
Languages : en
Pages : 343
Book Description
Now available in paperback, this book covers some recent developments in statistical inference. It provides methods applicable in problems involving nuisance parameters such as those encountered in comparing two exponential distributions or in ANOVA without the assumption of equal error variances. The generalized procedures are shown to be more powerful in detecting significant experimental results and in avoiding misleading conclusions.
Introductory Statistics 2e
Author: Barbara Illowsky
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 2106
Book Description
Introductory Statistics 2e provides an engaging, practical, and thorough overview of the core concepts and skills taught in most one-semester statistics courses. The text focuses on diverse applications from a variety of fields and societal contexts, including business, healthcare, sciences, sociology, political science, computing, and several others. The material supports students with conceptual narratives, detailed step-by-step examples, and a wealth of illustrations, as well as collaborative exercises, technology integration problems, and statistics labs. The text assumes some knowledge of intermediate algebra, and includes thousands of problems and exercises that offer instructors and students ample opportunity to explore and reinforce useful statistical skills. This is an adaptation of Introductory Statistics 2e by OpenStax. You can access the textbook as pdf for free at openstax.org. Minor editorial changes were made to ensure a better ebook reading experience. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution 4.0 International License.
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 2106
Book Description
Introductory Statistics 2e provides an engaging, practical, and thorough overview of the core concepts and skills taught in most one-semester statistics courses. The text focuses on diverse applications from a variety of fields and societal contexts, including business, healthcare, sciences, sociology, political science, computing, and several others. The material supports students with conceptual narratives, detailed step-by-step examples, and a wealth of illustrations, as well as collaborative exercises, technology integration problems, and statistics labs. The text assumes some knowledge of intermediate algebra, and includes thousands of problems and exercises that offer instructors and students ample opportunity to explore and reinforce useful statistical skills. This is an adaptation of Introductory Statistics 2e by OpenStax. You can access the textbook as pdf for free at openstax.org. Minor editorial changes were made to ensure a better ebook reading experience. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution 4.0 International License.
Distribution-free Methods for Statistical Process Monitoring and Control
Author:
Publisher:
ISBN: 9783030250829
Category : Process control
Languages : en
Pages : 261
Book Description
This book explores nonparametric statistical process control. It provides an up-to-date overview of nonparametric Shewhart-type univariate control charts, and reviews the recent literature on nonparametric charts, particularly multivariate schemes. Further, it discusses observations tied to the monitored population quantile, focusing on the Shewhart Sign chart. The book also addresses the issue of practically assuming the normality and the independence when a process is statistically monitored, and examines in detail change-point analysis-based distribution-free control charts designed for Phase I applications. Moreover, it introduces six distribution-free EWMA schemes for simultaneously monitoring the location and scale parameters of a univariate continuous process, and establishes two nonparametric Shewhart-type control charts based on order statistics with signaling runs-type rules. Lastly, the book proposes novel and effective method for early disease detection.
Publisher:
ISBN: 9783030250829
Category : Process control
Languages : en
Pages : 261
Book Description
This book explores nonparametric statistical process control. It provides an up-to-date overview of nonparametric Shewhart-type univariate control charts, and reviews the recent literature on nonparametric charts, particularly multivariate schemes. Further, it discusses observations tied to the monitored population quantile, focusing on the Shewhart Sign chart. The book also addresses the issue of practically assuming the normality and the independence when a process is statistically monitored, and examines in detail change-point analysis-based distribution-free control charts designed for Phase I applications. Moreover, it introduces six distribution-free EWMA schemes for simultaneously monitoring the location and scale parameters of a univariate continuous process, and establishes two nonparametric Shewhart-type control charts based on order statistics with signaling runs-type rules. Lastly, the book proposes novel and effective method for early disease detection.