Author: Carl Friedrich Gauss
Publisher: Springer
ISBN: 1493975609
Category : Mathematics
Languages : en
Pages : 491
Book Description
Carl Friedrich Gauss’s textbook, Disquisitiones arithmeticae, published in 1801 (Latin), remains to this day a true masterpiece of mathematical examination. .
Disquisitiones Arithmeticae
Author: Carl Friedrich Gauss
Publisher: Springer
ISBN: 1493975609
Category : Mathematics
Languages : en
Pages : 491
Book Description
Carl Friedrich Gauss’s textbook, Disquisitiones arithmeticae, published in 1801 (Latin), remains to this day a true masterpiece of mathematical examination. .
Publisher: Springer
ISBN: 1493975609
Category : Mathematics
Languages : en
Pages : 491
Book Description
Carl Friedrich Gauss’s textbook, Disquisitiones arithmeticae, published in 1801 (Latin), remains to this day a true masterpiece of mathematical examination. .
The Shaping of Arithmetic after C.F. Gauss's Disquisitiones Arithmeticae
Author: Catherine Goldstein
Publisher: Springer Science & Business Media
ISBN: 3540347208
Category : Mathematics
Languages : en
Pages : 579
Book Description
Since its publication, C.F. Gauss's Disquisitiones Arithmeticae (1801) has acquired an almost mythical reputation, standing as an ideal of exposition in notation, problems and methods; as a model of organisation and theory building; and as a source of mathematical inspiration. Eighteen authors - mathematicians, historians, philosophers - have collaborated in this volume to assess the impact of the Disquisitiones, in the two centuries since its publication.
Publisher: Springer Science & Business Media
ISBN: 3540347208
Category : Mathematics
Languages : en
Pages : 579
Book Description
Since its publication, C.F. Gauss's Disquisitiones Arithmeticae (1801) has acquired an almost mythical reputation, standing as an ideal of exposition in notation, problems and methods; as a model of organisation and theory building; and as a source of mathematical inspiration. Eighteen authors - mathematicians, historians, philosophers - have collaborated in this volume to assess the impact of the Disquisitiones, in the two centuries since its publication.
Basic Number Theory
Author: Andre Weil
Publisher: Springer Science & Business Media
ISBN: 9783540586555
Category : Mathematics
Languages : en
Pages : 340
Book Description
From the reviews: "L.R. Shafarevich showed me the first edition [...] and said that this book will be from now on the book about class field theory. In fact it is by far the most complete treatment of the main theorems of algebraic number theory, including function fields over finite constant fields, that appeared in book form." Zentralblatt MATH
Publisher: Springer Science & Business Media
ISBN: 9783540586555
Category : Mathematics
Languages : en
Pages : 340
Book Description
From the reviews: "L.R. Shafarevich showed me the first edition [...] and said that this book will be from now on the book about class field theory. In fact it is by far the most complete treatment of the main theorems of algebraic number theory, including function fields over finite constant fields, that appeared in book form." Zentralblatt MATH
Introduction to Classical Mathematics I
Author: Helmut Koch
Publisher: Springer Science & Business Media
ISBN: 9780792312314
Category : Mathematics
Languages : en
Pages : 482
Book Description
6Et moi, ..., si j'avait su comment en revenir, One service mathematics has rendered the human mce. It has put common sense back je n'y serais point alle.' Jules Verne where it belongs, on the topmost shelf nCllt to the dusty canister labelled 'discarded non sense'. The series is divergent; therefore we may be able to do something with it. Eric T. Bell O. Heaviside Mathematics is a tool for thought. A highly necessary tool in a world where both feedback and non linearities abound. Similarly, all kinds of parts of mathematics serve as tools for other parts and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics ...'; 'One service logic has rendered com puter science ...'; 'One service category theory has rendered mathematics ...'. All arguably true. And all statements obtainable this way form part of the raison d'etre of this series.
Publisher: Springer Science & Business Media
ISBN: 9780792312314
Category : Mathematics
Languages : en
Pages : 482
Book Description
6Et moi, ..., si j'avait su comment en revenir, One service mathematics has rendered the human mce. It has put common sense back je n'y serais point alle.' Jules Verne where it belongs, on the topmost shelf nCllt to the dusty canister labelled 'discarded non sense'. The series is divergent; therefore we may be able to do something with it. Eric T. Bell O. Heaviside Mathematics is a tool for thought. A highly necessary tool in a world where both feedback and non linearities abound. Similarly, all kinds of parts of mathematics serve as tools for other parts and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics ...'; 'One service logic has rendered com puter science ...'; 'One service category theory has rendered mathematics ...'. All arguably true. And all statements obtainable this way form part of the raison d'etre of this series.
A History of Abstract Algebra
Author: Jeremy Gray
Publisher: Springer
ISBN: 3319947737
Category : Mathematics
Languages : en
Pages : 412
Book Description
This textbook provides an accessible account of the history of abstract algebra, tracing a range of topics in modern algebra and number theory back to their modest presence in the seventeenth and eighteenth centuries, and exploring the impact of ideas on the development of the subject. Beginning with Gauss’s theory of numbers and Galois’s ideas, the book progresses to Dedekind and Kronecker, Jordan and Klein, Steinitz, Hilbert, and Emmy Noether. Approaching mathematical topics from a historical perspective, the author explores quadratic forms, quadratic reciprocity, Fermat’s Last Theorem, cyclotomy, quintic equations, Galois theory, commutative rings, abstract fields, ideal theory, invariant theory, and group theory. Readers will learn what Galois accomplished, how difficult the proofs of his theorems were, and how important Camille Jordan and Felix Klein were in the eventual acceptance of Galois’s approach to the solution of equations. The book also describes the relationship between Kummer’s ideal numbers and Dedekind’s ideals, and discusses why Dedekind felt his solution to the divisor problem was better than Kummer’s. Designed for a course in the history of modern algebra, this book is aimed at undergraduate students with an introductory background in algebra but will also appeal to researchers with a general interest in the topic. With exercises at the end of each chapter and appendices providing material difficult to find elsewhere, this book is self-contained and therefore suitable for self-study.
Publisher: Springer
ISBN: 3319947737
Category : Mathematics
Languages : en
Pages : 412
Book Description
This textbook provides an accessible account of the history of abstract algebra, tracing a range of topics in modern algebra and number theory back to their modest presence in the seventeenth and eighteenth centuries, and exploring the impact of ideas on the development of the subject. Beginning with Gauss’s theory of numbers and Galois’s ideas, the book progresses to Dedekind and Kronecker, Jordan and Klein, Steinitz, Hilbert, and Emmy Noether. Approaching mathematical topics from a historical perspective, the author explores quadratic forms, quadratic reciprocity, Fermat’s Last Theorem, cyclotomy, quintic equations, Galois theory, commutative rings, abstract fields, ideal theory, invariant theory, and group theory. Readers will learn what Galois accomplished, how difficult the proofs of his theorems were, and how important Camille Jordan and Felix Klein were in the eventual acceptance of Galois’s approach to the solution of equations. The book also describes the relationship between Kummer’s ideal numbers and Dedekind’s ideals, and discusses why Dedekind felt his solution to the divisor problem was better than Kummer’s. Designed for a course in the history of modern algebra, this book is aimed at undergraduate students with an introductory background in algebra but will also appeal to researchers with a general interest in the topic. With exercises at the end of each chapter and appendices providing material difficult to find elsewhere, this book is self-contained and therefore suitable for self-study.
Higher Arithmetic
Author: Harold M. Edwards
Publisher: American Mathematical Soc.
ISBN: 9780821844397
Category : Mathematics
Languages : en
Pages : 228
Book Description
Among the topics featured in this textbook are: congruences; the fundamental theorem of arithmetic; exponentiation and orders; primality testing; the RSA cipher system; polynomials; modules of hypernumbers; signatures of equivalence classes; and the theory of binary quadratic forms. The book contains exercises with answers.
Publisher: American Mathematical Soc.
ISBN: 9780821844397
Category : Mathematics
Languages : en
Pages : 228
Book Description
Among the topics featured in this textbook are: congruences; the fundamental theorem of arithmetic; exponentiation and orders; primality testing; the RSA cipher system; polynomials; modules of hypernumbers; signatures of equivalence classes; and the theory of binary quadratic forms. The book contains exercises with answers.
Introduction to Number Theory
Author: Daniel E. Flath
Publisher: American Mathematical Soc.
ISBN: 1470446944
Category : Mathematics
Languages : en
Pages : 228
Book Description
Growing out of a course designed to teach Gauss's Disquisitiones Arithmeticae to honors-level undergraduates, Flath's Introduction to Number Theory focuses on Gauss's theory of binary quadratic forms. It is suitable for use as a textbook in a course or self-study by advanced undergraduates or graduate students who possess a basic familiarity with abstract algebra. The text treats a variety of topics from elementary number theory including the distribution of primes, sums of squares, continued factions, the Legendre, Jacobi and Kronecker symbols, the class group and genera. But the focus is on quadratic reciprocity (several proofs are given including one that highlights the p−q symmetry) and binary quadratic forms. The reader will come away with a good understanding of what Gauss intended in the Disquisitiones and Dirichlet in his Vorlesungen. The text also includes a lovely appendix by J. P. Serre titled Δ=b2−4ac. The clarity of the author's vision is matched by the clarity of his exposition. This is a book that reveals the discovery of the quadratic core of algebraic number theory. It should be on the desk of every instructor of introductory number theory as a source of inspiration, motivation, examples, and historical insight.
Publisher: American Mathematical Soc.
ISBN: 1470446944
Category : Mathematics
Languages : en
Pages : 228
Book Description
Growing out of a course designed to teach Gauss's Disquisitiones Arithmeticae to honors-level undergraduates, Flath's Introduction to Number Theory focuses on Gauss's theory of binary quadratic forms. It is suitable for use as a textbook in a course or self-study by advanced undergraduates or graduate students who possess a basic familiarity with abstract algebra. The text treats a variety of topics from elementary number theory including the distribution of primes, sums of squares, continued factions, the Legendre, Jacobi and Kronecker symbols, the class group and genera. But the focus is on quadratic reciprocity (several proofs are given including one that highlights the p−q symmetry) and binary quadratic forms. The reader will come away with a good understanding of what Gauss intended in the Disquisitiones and Dirichlet in his Vorlesungen. The text also includes a lovely appendix by J. P. Serre titled Δ=b2−4ac. The clarity of the author's vision is matched by the clarity of his exposition. This is a book that reveals the discovery of the quadratic core of algebraic number theory. It should be on the desk of every instructor of introductory number theory as a source of inspiration, motivation, examples, and historical insight.
Number Theory Revealed: An Introduction
Author: Andrew Granville
Publisher: American Mathematical Soc.
ISBN: 1470441578
Category : Education
Languages : en
Pages : 290
Book Description
Number Theory Revealed: An Introduction acquaints undergraduates with the “Queen of Mathematics”. The text offers a fresh take on congruences, power residues, quadratic residues, primes, and Diophantine equations and presents hot topics like cryptography, factoring, and primality testing. Students are also introduced to beautiful enlightening questions like the structure of Pascal's triangle mod p p and modern twists on traditional questions like the values represented by binary quadratic forms and large solutions of equations. Each chapter includes an “elective appendix” with additional reading, projects, and references. An expanded edition, Number Theory Revealed: A Masterclass, offers a more comprehensive approach to these core topics and adds additional material in further chapters and appendices, allowing instructors to create an individualized course tailored to their own (and their students') interests.
Publisher: American Mathematical Soc.
ISBN: 1470441578
Category : Education
Languages : en
Pages : 290
Book Description
Number Theory Revealed: An Introduction acquaints undergraduates with the “Queen of Mathematics”. The text offers a fresh take on congruences, power residues, quadratic residues, primes, and Diophantine equations and presents hot topics like cryptography, factoring, and primality testing. Students are also introduced to beautiful enlightening questions like the structure of Pascal's triangle mod p p and modern twists on traditional questions like the values represented by binary quadratic forms and large solutions of equations. Each chapter includes an “elective appendix” with additional reading, projects, and references. An expanded edition, Number Theory Revealed: A Masterclass, offers a more comprehensive approach to these core topics and adds additional material in further chapters and appendices, allowing instructors to create an individualized course tailored to their own (and their students') interests.
The Math Book
Author: Clifford A. Pickover
Publisher: Sterling Publishing Company, Inc.
ISBN: 9781402757969
Category : Mathematics
Languages : en
Pages : 532
Book Description
This book covers 250 milestones in mathematical history, beginning millions of years ago with ancient "ant odometers" and moving through time to our modern-day quest for new dimensions.
Publisher: Sterling Publishing Company, Inc.
ISBN: 9781402757969
Category : Mathematics
Languages : en
Pages : 532
Book Description
This book covers 250 milestones in mathematical history, beginning millions of years ago with ancient "ant odometers" and moving through time to our modern-day quest for new dimensions.
Classical Theory of Algebraic Numbers
Author: Paulo Ribenboim
Publisher: Springer Science & Business Media
ISBN: 0387216901
Category : Mathematics
Languages : en
Pages : 676
Book Description
The exposition of the classical theory of algebraic numbers is clear and thorough, and there is a large number of exercises as well as worked out numerical examples. A careful study of this book will provide a solid background to the learning of more recent topics.
Publisher: Springer Science & Business Media
ISBN: 0387216901
Category : Mathematics
Languages : en
Pages : 676
Book Description
The exposition of the classical theory of algebraic numbers is clear and thorough, and there is a large number of exercises as well as worked out numerical examples. A careful study of this book will provide a solid background to the learning of more recent topics.