An Introduction to Composite Materials

An Introduction to Composite Materials PDF Author: D. Hull
Publisher: Cambridge University Press
ISBN: 1107393183
Category : Technology & Engineering
Languages : en
Pages : 334

Get Book Here

Book Description
This edition has been greatly enlarged and updated to provide both scientists and engineers with a clear and comprehensive understanding of composite materials. In describing both theoretical and practical aspects of their production, properties and usage, the book crosses the borders of many disciplines. Topics covered include: fibres, matrices, laminates and interfaces; elastic deformation, stress and strain, strength, fatigue crack propagation and creep resistance; toughness and thermal properties; fatigue and deterioration under environmental conditions; fabrication and applications. Coverage has been increased to include polymeric, metallic and ceramic matrices and reinforcement in the form of long fibres, short fibres and particles. Designed primarily as a teaching text for final-year undergraduates in materials science and engineering, this book will also interest undergraduates and postgraduates in chemistry, physics, and mechanical engineering. In addition, it will be an excellent source book for academic and technological researchers on materials.

An Introduction to Composite Materials

An Introduction to Composite Materials PDF Author: D. Hull
Publisher: Cambridge University Press
ISBN: 1107393183
Category : Technology & Engineering
Languages : en
Pages : 334

Get Book Here

Book Description
This edition has been greatly enlarged and updated to provide both scientists and engineers with a clear and comprehensive understanding of composite materials. In describing both theoretical and practical aspects of their production, properties and usage, the book crosses the borders of many disciplines. Topics covered include: fibres, matrices, laminates and interfaces; elastic deformation, stress and strain, strength, fatigue crack propagation and creep resistance; toughness and thermal properties; fatigue and deterioration under environmental conditions; fabrication and applications. Coverage has been increased to include polymeric, metallic and ceramic matrices and reinforcement in the form of long fibres, short fibres and particles. Designed primarily as a teaching text for final-year undergraduates in materials science and engineering, this book will also interest undergraduates and postgraduates in chemistry, physics, and mechanical engineering. In addition, it will be an excellent source book for academic and technological researchers on materials.

Crystal Plasticity Finite Element Methods

Crystal Plasticity Finite Element Methods PDF Author: Franz Roters
Publisher: John Wiley & Sons
ISBN: 3527642099
Category : Technology & Engineering
Languages : en
Pages : 188

Get Book Here

Book Description
Written by the leading experts in computational materials science, this handy reference concisely reviews the most important aspects of plasticity modeling: constitutive laws, phase transformations, texture methods, continuum approaches and damage mechanisms. As a result, it provides the knowledge needed to avoid failures in critical systems udner mechanical load. With its various application examples to micro- and macrostructure mechanics, this is an invaluable resource for mechanical engineers as well as for researchers wanting to improve on this method and extend its outreach.

Dislocation Based Fracture Mechanics

Dislocation Based Fracture Mechanics PDF Author: Johannes Weertman
Publisher: World Scientific Publishing Company
ISBN: 981310497X
Category : Technology & Engineering
Languages : en
Pages : 548

Get Book Here

Book Description
The dislocation is the basic building block of the crack in an elastic-plastic solid. Fracture mechanics is developed in this text from its dislocation foundation. It is the only text to do so. It is written for the graduate student and the new investigator entering the fracture field as well as the experienced scientist who has not used the dislocation approach. The dislocation mechanics needed to find the dislocation density fields of crack tip plastic zones is developed in detail. All known dislocation based solutions are given for the three types of cracks in elastic-plastic solids are given.

Theory of Dislocations

Theory of Dislocations PDF Author: Peter M. Anderson
Publisher: Cambridge University Press
ISBN: 0521864364
Category : Science
Languages : en
Pages : 721

Get Book Here

Book Description
This book provides a comprehensive understanding of the nucleation, motion, and interaction between crystalline defects called dislocations.

Mechanics and Physics of Energy Density

Mechanics and Physics of Energy Density PDF Author: George C. Sih
Publisher: Springer Science & Business Media
ISBN: 9400919549
Category : Science
Languages : en
Pages : 224

Get Book Here

Book Description
Material technology has become so diversified in theories and the construction of novel microstructures that the researchers and practitioners are drifting further apart. This book is based on material presented at an International Symposium in Xanthi, Greece in July 1989. The symposium attracted a group of individual engineers and scientists from the East and West who tackled the question of why particular manipulations of a given material have particular effects. Emphasis is laid on the strain energy function because of the versatile role it plays in mechanics and physics. It has been used successfully not only in predicting the failure of solids but also in formulating constitutive relations in continuum mechanics. The material presented falls within the areas of: Fundamentals of Strain Energy Density, Damage Analysis on Strain Energy Density, Strain Energy Density as Failure Criterion, Applications, and Composites.

Dislocations and Plastic Deformation

Dislocations and Plastic Deformation PDF Author: I. Kovács
Publisher: Elsevier
ISBN: 1483146189
Category : Science
Languages : en
Pages : 359

Get Book Here

Book Description
Dislocations and Plastic Deformation deals with dislocations and plastic deformation, and specifically discusses topics ranging from deformation of single crystals and dislocations in the lattice to the fundamentals of the continuum theory, the properties of point defects in crystals, multiplication of dislocations, and partial dislocations. The effect of lattice defects on the physical properties of metals is also considered. Comprised of nine chapters, this book begins by providing a short and, where possible, precise explanation of dislocation theory. The first six chapters discuss the properties of dislocations and point defects both in crystals and in an elastic continuum. The reader is then introduced to some applications of dislocation theory that show, for instance, the difficulties involved in understanding the hardening of alloys and the work-hardening of pure metals. This book concludes by analyzing the effect of heat treatment on the defect structure in metals. This text will be of interest to students and practitioners in the field of physics.

Dislocation Mechanics of Metal Plasticity and Fracturing

Dislocation Mechanics of Metal Plasticity and Fracturing PDF Author: Ronald W. Armstrong
Publisher: MDPI
ISBN: 3039432648
Category : Science
Languages : en
Pages : 188

Get Book Here

Book Description
The modern understanding of metal plasticity and fracturing began about 100 years ago, with pioneering work; first, on crack-induced fracturing by Griffith and, second, with the invention of dislocation-enhanced crystal plasticity by Taylor, Orowan and Polanyi. The modern counterparts are fracture mechanics, as invented by Irwin, and dislocation mechanics, as initiated in pioneering work by Cottrell. No less important was the breakthrough development of optical characterization of sectioned polycrystalline metal microstructures started by Sorby in the late 19th century and leading eventually to modern optical, x-ray and electron microscopy methods for assessments of crystal fracture surfaces, via fractography, and particularly of x-ray and electron microscopy techniques applied to quantitative characterizations of internal dislocation behaviors. A major current effort is to match computational simulations of metal deformation/fracturing behaviors with experimental measurements made over extended ranges of microstructures and over varying external conditions of stress-state, temperature and loading rate. The relation of such simulations to the development of constitutive equations for a hoped-for predictive description of material deformation/fracturing behaviors is an active topic of research. The present collection of articles provides a broad sampling of research accomplishments on the two subjects.

Dislocations in Solids

Dislocations in Solids PDF Author: Frank R.N. Nabarro
Publisher: Elsevier
ISBN: 0080530451
Category : Science
Languages : en
Pages : 687

Get Book Here

Book Description
Dislocations are lines of irregularity in the structure of a solid analogous to the bumps in a badly laid carpet. Like these bumps, they can be easily moved, and they provide the most important mechanism by which the solid can be deformed. They also have a strong influence on crystal growth and on the electronic properties of semiconductors.

Mechanics of Generalized Continua

Mechanics of Generalized Continua PDF Author: E. Kröner
Publisher: Springer Science & Business Media
ISBN: 3662302578
Category : Science
Languages : en
Pages : 370

Get Book Here

Book Description
5 The symposium was held in Freudenstadt from 28\h to 31 \ ofAugust st nd 1967 and in Stuttgart from 1 to 2 of September 1967. The proposal to hold this symposium originated with the German Society of Applied Mathematics and Mechanics (GAMM) late in 1964 and was examined by a committee of IUTAM especially appointed for this purpose. The basis of this examination was a report in which the present situation in the field and the possible aims of the symposium were surveyed. Briefly, the aims of the symposium were stated to be 1. the unification of the various approaches developed in recent years with the aim of penetrating into the microscopic world of matter by means of continuum theories; 2. the bridging of the gap between microscopic (or atomic) research on mechanics on one hand, and the phenomenological (or continuum mechanical) approach on the other hand; 3. the physical interpretation and the relation to actual material behaviour of the quantities and laws introduced into the new theories, together with applications; 4. the further development of the theories, where necessary, and the clarification of open questions; 5. a stocktaking of present achievements and the prognosis for future developments. The committee agreed unanimously that the topic of the symposium represented an important phase of current developments in continuum mechanics, from the purely theoretical point of view as well as in connection with possible applications to actual materials.

DISLOCATIONS AND MECHANICAL BEHAVIOUR OF MATERIALS

DISLOCATIONS AND MECHANICAL BEHAVIOUR OF MATERIALS PDF Author: M. N. SHETTY
Publisher: PHI Learning Pvt. Ltd.
ISBN: 8120346386
Category : Technology & Engineering
Languages : en
Pages : 991

Get Book Here

Book Description
Primarily intended for the senior undergraduate and postgraduate students of Metallurgical and Materials Engineering/Mechanical Engineering, the book begins with the description of elementary mechanical testing method and then moves on to the theory of elasticity, the micromechanics of high strain rate deformation phenomenon and quantitative methods of materials selection. Dislocation and their applications is the strength of this book. The topics such as creep, fatigue and fracture are comprehensively covered. The final chapter presents the principles of materials selection. The book contains numerous solved and unsolved examples to reinforce the understanding of the subject.