Author: Nicholas A. Scoville
Publisher: American Mathematical Soc.
ISBN: 1470452987
Category : Mathematics
Languages : en
Pages : 289
Book Description
Discrete Morse theory is a powerful tool combining ideas in both topology and combinatorics. Invented by Robin Forman in the mid 1990s, discrete Morse theory is a combinatorial analogue of Marston Morse's classical Morse theory. Its applications are vast, including applications to topological data analysis, combinatorics, and computer science. This book, the first one devoted solely to discrete Morse theory, serves as an introduction to the subject. Since the book restricts the study of discrete Morse theory to abstract simplicial complexes, a course in mathematical proof writing is the only prerequisite needed. Topics covered include simplicial complexes, simple homotopy, collapsibility, gradient vector fields, Hasse diagrams, simplicial homology, persistent homology, discrete Morse inequalities, the Morse complex, discrete Morse homology, and strong discrete Morse functions. Students of computer science will also find the book beneficial as it includes topics such as Boolean functions, evasiveness, and has a chapter devoted to some computational aspects of discrete Morse theory. The book is appropriate for a course in discrete Morse theory, a supplemental text to a course in algebraic topology or topological combinatorics, or an independent study.
Discrete Morse Theory
Author: Nicholas A. Scoville
Publisher: American Mathematical Soc.
ISBN: 1470452987
Category : Mathematics
Languages : en
Pages : 289
Book Description
Discrete Morse theory is a powerful tool combining ideas in both topology and combinatorics. Invented by Robin Forman in the mid 1990s, discrete Morse theory is a combinatorial analogue of Marston Morse's classical Morse theory. Its applications are vast, including applications to topological data analysis, combinatorics, and computer science. This book, the first one devoted solely to discrete Morse theory, serves as an introduction to the subject. Since the book restricts the study of discrete Morse theory to abstract simplicial complexes, a course in mathematical proof writing is the only prerequisite needed. Topics covered include simplicial complexes, simple homotopy, collapsibility, gradient vector fields, Hasse diagrams, simplicial homology, persistent homology, discrete Morse inequalities, the Morse complex, discrete Morse homology, and strong discrete Morse functions. Students of computer science will also find the book beneficial as it includes topics such as Boolean functions, evasiveness, and has a chapter devoted to some computational aspects of discrete Morse theory. The book is appropriate for a course in discrete Morse theory, a supplemental text to a course in algebraic topology or topological combinatorics, or an independent study.
Publisher: American Mathematical Soc.
ISBN: 1470452987
Category : Mathematics
Languages : en
Pages : 289
Book Description
Discrete Morse theory is a powerful tool combining ideas in both topology and combinatorics. Invented by Robin Forman in the mid 1990s, discrete Morse theory is a combinatorial analogue of Marston Morse's classical Morse theory. Its applications are vast, including applications to topological data analysis, combinatorics, and computer science. This book, the first one devoted solely to discrete Morse theory, serves as an introduction to the subject. Since the book restricts the study of discrete Morse theory to abstract simplicial complexes, a course in mathematical proof writing is the only prerequisite needed. Topics covered include simplicial complexes, simple homotopy, collapsibility, gradient vector fields, Hasse diagrams, simplicial homology, persistent homology, discrete Morse inequalities, the Morse complex, discrete Morse homology, and strong discrete Morse functions. Students of computer science will also find the book beneficial as it includes topics such as Boolean functions, evasiveness, and has a chapter devoted to some computational aspects of discrete Morse theory. The book is appropriate for a course in discrete Morse theory, a supplemental text to a course in algebraic topology or topological combinatorics, or an independent study.
Organized Collapse: An Introduction to Discrete Morse Theory
Author: Dmitry N. Kozlov
Publisher: American Mathematical Society
ISBN: 1470464551
Category : Mathematics
Languages : en
Pages : 339
Book Description
Applied topology is a modern subject which emerged in recent years at a crossroads of many methods, all of them topological in nature, which were used in a wide variety of applications in classical mathematics and beyond. Within applied topology, discrete Morse theory came into light as one of the main tools to understand cell complexes arising in different contexts, as well as to reduce the complexity of homology calculations. The present book provides a gentle introduction into this beautiful theory. Using a combinatorial approach—the author emphasizes acyclic matchings as the central object of study. The first two parts of the book can be used as a stand-alone introduction to homology, the last two parts delve into the core of discrete Morse theory. The presentation is broad, ranging from abstract topics, such as formulation of the entire theory using poset maps with small fibers, to heavily computational aspects, providing, for example, a specific algorithm of finding an explicit homology basis starting from an acyclic matching. The book will be appreciated by graduate students in applied topology, students and specialists in computer science and engineering, as well as research mathematicians interested in learning about the subject and applying it in context of their fields.
Publisher: American Mathematical Society
ISBN: 1470464551
Category : Mathematics
Languages : en
Pages : 339
Book Description
Applied topology is a modern subject which emerged in recent years at a crossroads of many methods, all of them topological in nature, which were used in a wide variety of applications in classical mathematics and beyond. Within applied topology, discrete Morse theory came into light as one of the main tools to understand cell complexes arising in different contexts, as well as to reduce the complexity of homology calculations. The present book provides a gentle introduction into this beautiful theory. Using a combinatorial approach—the author emphasizes acyclic matchings as the central object of study. The first two parts of the book can be used as a stand-alone introduction to homology, the last two parts delve into the core of discrete Morse theory. The presentation is broad, ranging from abstract topics, such as formulation of the entire theory using poset maps with small fibers, to heavily computational aspects, providing, for example, a specific algorithm of finding an explicit homology basis starting from an acyclic matching. The book will be appreciated by graduate students in applied topology, students and specialists in computer science and engineering, as well as research mathematicians interested in learning about the subject and applying it in context of their fields.
Morse Theory: Smooth And Discrete
Author: Kevin P Knudson
Publisher: World Scientific Publishing Company
ISBN: 9814630985
Category : Mathematics
Languages : en
Pages : 196
Book Description
Morse Theory: Smooth and Discrete serves as an introduction to classical smooth Morse theory and to Forman's discrete Morse theory, highlighting the parallels between the two subjects. This is the first time both smooth and discrete Morse theory have been treated in a single volume. This makes the book a valuable resource for students and professionals working in topology and discrete mathematics. With a strong focus on examples, the text is suitable for advanced undergraduates or beginning graduate students.
Publisher: World Scientific Publishing Company
ISBN: 9814630985
Category : Mathematics
Languages : en
Pages : 196
Book Description
Morse Theory: Smooth and Discrete serves as an introduction to classical smooth Morse theory and to Forman's discrete Morse theory, highlighting the parallels between the two subjects. This is the first time both smooth and discrete Morse theory have been treated in a single volume. This makes the book a valuable resource for students and professionals working in topology and discrete mathematics. With a strong focus on examples, the text is suitable for advanced undergraduates or beginning graduate students.
An Introduction to Morse Theory
Author: Yukio Matsumoto
Publisher: American Mathematical Soc.
ISBN: 9780821810224
Category : Mathematics
Languages : en
Pages : 244
Book Description
Finite-dimensional Morse theory is easier to present fundamental ideas than in infinite-dimensional Morse theory, which is theoretically more involved. However, finite-dimensional Morse theory has its own significance. This volume explains the finte-dimensional Morse theory.
Publisher: American Mathematical Soc.
ISBN: 9780821810224
Category : Mathematics
Languages : en
Pages : 244
Book Description
Finite-dimensional Morse theory is easier to present fundamental ideas than in infinite-dimensional Morse theory, which is theoretically more involved. However, finite-dimensional Morse theory has its own significance. This volume explains the finte-dimensional Morse theory.
An Invitation to Morse Theory
Author: Liviu Nicolaescu
Publisher: Springer Science & Business Media
ISBN: 146141105X
Category : Mathematics
Languages : en
Pages : 366
Book Description
This self-contained treatment of Morse theory focuses on applications and is intended for a graduate course on differential or algebraic topology, and will also be of interest to researchers. This is the first textbook to include topics such as Morse-Smale flows, Floer homology, min-max theory, moment maps and equivariant cohomology, and complex Morse theory. The reader is expected to have some familiarity with cohomology theory and differential and integral calculus on smooth manifolds. Some features of the second edition include added applications, such as Morse theory and the curvature of knots, the cohomology of the moduli space of planar polygons, and the Duistermaat-Heckman formula. The second edition also includes a new chapter on Morse-Smale flows and Whitney stratifications, many new exercises, and various corrections from the first edition.
Publisher: Springer Science & Business Media
ISBN: 146141105X
Category : Mathematics
Languages : en
Pages : 366
Book Description
This self-contained treatment of Morse theory focuses on applications and is intended for a graduate course on differential or algebraic topology, and will also be of interest to researchers. This is the first textbook to include topics such as Morse-Smale flows, Floer homology, min-max theory, moment maps and equivariant cohomology, and complex Morse theory. The reader is expected to have some familiarity with cohomology theory and differential and integral calculus on smooth manifolds. Some features of the second edition include added applications, such as Morse theory and the curvature of knots, the cohomology of the moduli space of planar polygons, and the Duistermaat-Heckman formula. The second edition also includes a new chapter on Morse-Smale flows and Whitney stratifications, many new exercises, and various corrections from the first edition.
Minimal Resolutions via Algebraic Discrete Morse Theory
Author: Michael Jöllenbeck
Publisher: American Mathematical Soc.
ISBN: 0821842579
Category : Language Arts & Disciplines
Languages : en
Pages : 88
Book Description
"January 2009, volume 197, number 923 (end of volume)."
Publisher: American Mathematical Soc.
ISBN: 0821842579
Category : Language Arts & Disciplines
Languages : en
Pages : 88
Book Description
"January 2009, volume 197, number 923 (end of volume)."
Mathematical Visualization
Author: H.-C. Hege
Publisher: Springer Science & Business Media
ISBN: 3662035677
Category : Mathematics
Languages : en
Pages : 398
Book Description
Mathematical Visualization is a young new discipline. It offers efficient visualization tools to the classical subjects of mathematics, and applies mathematical techniques to problems in computer graphics and scientific visualization. Originally, it started in the interdisciplinary area of differential geometry, numerical mathematics, and computer graphics. In recent years, the methods developed have found important applications. The current volume is the quintessence of an international workshop in September 1997 in Berlin, focusing on recent developments in this emerging area. Experts present selected research work on new algorithms for visualization problems, describe the application and experiments in geometry, and develop new numerical or computer graphical techniques.
Publisher: Springer Science & Business Media
ISBN: 3662035677
Category : Mathematics
Languages : en
Pages : 398
Book Description
Mathematical Visualization is a young new discipline. It offers efficient visualization tools to the classical subjects of mathematics, and applies mathematical techniques to problems in computer graphics and scientific visualization. Originally, it started in the interdisciplinary area of differential geometry, numerical mathematics, and computer graphics. In recent years, the methods developed have found important applications. The current volume is the quintessence of an international workshop in September 1997 in Berlin, focusing on recent developments in this emerging area. Experts present selected research work on new algorithms for visualization problems, describe the application and experiments in geometry, and develop new numerical or computer graphical techniques.
Morse Theory. (AM-51), Volume 51
Author: John Milnor
Publisher: Princeton University Press
ISBN: 1400881803
Category : Mathematics
Languages : en
Pages : 163
Book Description
One of the most cited books in mathematics, John Milnor's exposition of Morse theory has been the most important book on the subject for more than forty years. Morse theory was developed in the 1920s by mathematician Marston Morse. (Morse was on the faculty of the Institute for Advanced Study, and Princeton published his Topological Methods in the Theory of Functions of a Complex Variable in the Annals of Mathematics Studies series in 1947.) One classical application of Morse theory includes the attempt to understand, with only limited information, the large-scale structure of an object. This kind of problem occurs in mathematical physics, dynamic systems, and mechanical engineering. Morse theory has received much attention in the last two decades as a result of a famous paper in which theoretical physicist Edward Witten relates Morse theory to quantum field theory. Milnor was awarded the Fields Medal (the mathematical equivalent of a Nobel Prize) in 1962 for his work in differential topology. He has since received the National Medal of Science (1967) and the Steele Prize from the American Mathematical Society twice (1982 and 2004) in recognition of his explanations of mathematical concepts across a wide range of scienti.c disciplines. The citation reads, "The phrase sublime elegance is rarely associated with mathematical exposition, but it applies to all of Milnor's writings. Reading his books, one is struck with the ease with which the subject is unfolding and it only becomes apparent after re.ection that this ease is the mark of a master.? Milnor has published five books with Princeton University Press.
Publisher: Princeton University Press
ISBN: 1400881803
Category : Mathematics
Languages : en
Pages : 163
Book Description
One of the most cited books in mathematics, John Milnor's exposition of Morse theory has been the most important book on the subject for more than forty years. Morse theory was developed in the 1920s by mathematician Marston Morse. (Morse was on the faculty of the Institute for Advanced Study, and Princeton published his Topological Methods in the Theory of Functions of a Complex Variable in the Annals of Mathematics Studies series in 1947.) One classical application of Morse theory includes the attempt to understand, with only limited information, the large-scale structure of an object. This kind of problem occurs in mathematical physics, dynamic systems, and mechanical engineering. Morse theory has received much attention in the last two decades as a result of a famous paper in which theoretical physicist Edward Witten relates Morse theory to quantum field theory. Milnor was awarded the Fields Medal (the mathematical equivalent of a Nobel Prize) in 1962 for his work in differential topology. He has since received the National Medal of Science (1967) and the Steele Prize from the American Mathematical Society twice (1982 and 2004) in recognition of his explanations of mathematical concepts across a wide range of scienti.c disciplines. The citation reads, "The phrase sublime elegance is rarely associated with mathematical exposition, but it applies to all of Milnor's writings. Reading his books, one is struck with the ease with which the subject is unfolding and it only becomes apparent after re.ection that this ease is the mark of a master.? Milnor has published five books with Princeton University Press.
Computational Topology for Data Analysis
Author: Tamal Krishna Dey
Publisher: Cambridge University Press
ISBN: 1009103199
Category : Mathematics
Languages : en
Pages : 456
Book Description
Topological data analysis (TDA) has emerged recently as a viable tool for analyzing complex data, and the area has grown substantially both in its methodologies and applicability. Providing a computational and algorithmic foundation for techniques in TDA, this comprehensive, self-contained text introduces students and researchers in mathematics and computer science to the current state of the field. The book features a description of mathematical objects and constructs behind recent advances, the algorithms involved, computational considerations, as well as examples of topological structures or ideas that can be used in applications. It provides a thorough treatment of persistent homology together with various extensions – like zigzag persistence and multiparameter persistence – and their applications to different types of data, like point clouds, triangulations, or graph data. Other important topics covered include discrete Morse theory, the Mapper structure, optimal generating cycles, as well as recent advances in embedding TDA within machine learning frameworks.
Publisher: Cambridge University Press
ISBN: 1009103199
Category : Mathematics
Languages : en
Pages : 456
Book Description
Topological data analysis (TDA) has emerged recently as a viable tool for analyzing complex data, and the area has grown substantially both in its methodologies and applicability. Providing a computational and algorithmic foundation for techniques in TDA, this comprehensive, self-contained text introduces students and researchers in mathematics and computer science to the current state of the field. The book features a description of mathematical objects and constructs behind recent advances, the algorithms involved, computational considerations, as well as examples of topological structures or ideas that can be used in applications. It provides a thorough treatment of persistent homology together with various extensions – like zigzag persistence and multiparameter persistence – and their applications to different types of data, like point clouds, triangulations, or graph data. Other important topics covered include discrete Morse theory, the Mapper structure, optimal generating cycles, as well as recent advances in embedding TDA within machine learning frameworks.
Stratified Morse Theory
Author: Mark Goresky
Publisher: Springer Science & Business Media
ISBN: 3642717144
Category : Mathematics
Languages : en
Pages : 279
Book Description
Due to the lack of proper bibliographical sources stratification theory seems to be a "mysterious" subject in contemporary mathematics. This book contains a complete and elementary survey - including an extended bibliography - on stratification theory, including its historical development. Some further important topics in the book are: Morse theory, singularities, transversality theory, complex analytic varieties, Lefschetz theorems, connectivity theorems, intersection homology, complements of affine subspaces and combinatorics. The book is designed for all interested students or professionals in this area.
Publisher: Springer Science & Business Media
ISBN: 3642717144
Category : Mathematics
Languages : en
Pages : 279
Book Description
Due to the lack of proper bibliographical sources stratification theory seems to be a "mysterious" subject in contemporary mathematics. This book contains a complete and elementary survey - including an extended bibliography - on stratification theory, including its historical development. Some further important topics in the book are: Morse theory, singularities, transversality theory, complex analytic varieties, Lefschetz theorems, connectivity theorems, intersection homology, complements of affine subspaces and combinatorics. The book is designed for all interested students or professionals in this area.