Author: S. Allen Broughton
Publisher: John Wiley & Sons
ISBN: 1119258243
Category : Mathematics
Languages : en
Pages : 582
Book Description
Delivers an appropriate mix of theory and applications to help readers understand the process and problems of image and signal analysis Maintaining a comprehensive and accessible treatment of the concepts, methods, and applications of signal and image data transformation, this Second Edition of Discrete Fourier Analysis and Wavelets: Applications to Signal and Image Processing features updated and revised coverage throughout with an emphasis on key and recent developments in the field of signal and image processing. Topical coverage includes: vector spaces, signals, and images; the discrete Fourier transform; the discrete cosine transform; convolution and filtering; windowing and localization; spectrograms; frames; filter banks; lifting schemes; and wavelets. Discrete Fourier Analysis and Wavelets introduces a new chapter on frames—a new technology in which signals, images, and other data are redundantly measured. This redundancy allows for more sophisticated signal analysis. The new coverage also expands upon the discussion on spectrograms using a frames approach. In addition, the book includes a new chapter on lifting schemes for wavelets and provides a variation on the original low-pass/high-pass filter bank approach to the design and implementation of wavelets. These new chapters also include appropriate exercises and MATLAB® projects for further experimentation and practice. Features updated and revised content throughout, continues to emphasize discrete and digital methods, and utilizes MATLAB® to illustrate these concepts Contains two new chapters on frames and lifting schemes, which take into account crucial new advances in the field of signal and image processing Expands the discussion on spectrograms using a frames approach, which is an ideal method for reconstructing signals after information has been lost or corrupted (packet erasure) Maintains a comprehensive treatment of linear signal processing for audio and image signals with a well-balanced and accessible selection of topics that appeal to a diverse audience within mathematics and engineering Focuses on the underlying mathematics, especially the concepts of finite-dimensional vector spaces and matrix methods, and provides a rigorous model for signals and images based on vector spaces and linear algebra methods Supplemented with a companion website containing solution sets and software exploration support for MATLAB and SciPy (Scientific Python) Thoroughly class-tested over the past fifteen years, Discrete Fourier Analysis and Wavelets: Applications to Signal and Image Processing is an appropriately self-contained book ideal for a one-semester course on the subject.
Discrete Fourier Analysis and Wavelets
Author: S. Allen Broughton
Publisher: John Wiley & Sons
ISBN: 1119258243
Category : Mathematics
Languages : en
Pages : 582
Book Description
Delivers an appropriate mix of theory and applications to help readers understand the process and problems of image and signal analysis Maintaining a comprehensive and accessible treatment of the concepts, methods, and applications of signal and image data transformation, this Second Edition of Discrete Fourier Analysis and Wavelets: Applications to Signal and Image Processing features updated and revised coverage throughout with an emphasis on key and recent developments in the field of signal and image processing. Topical coverage includes: vector spaces, signals, and images; the discrete Fourier transform; the discrete cosine transform; convolution and filtering; windowing and localization; spectrograms; frames; filter banks; lifting schemes; and wavelets. Discrete Fourier Analysis and Wavelets introduces a new chapter on frames—a new technology in which signals, images, and other data are redundantly measured. This redundancy allows for more sophisticated signal analysis. The new coverage also expands upon the discussion on spectrograms using a frames approach. In addition, the book includes a new chapter on lifting schemes for wavelets and provides a variation on the original low-pass/high-pass filter bank approach to the design and implementation of wavelets. These new chapters also include appropriate exercises and MATLAB® projects for further experimentation and practice. Features updated and revised content throughout, continues to emphasize discrete and digital methods, and utilizes MATLAB® to illustrate these concepts Contains two new chapters on frames and lifting schemes, which take into account crucial new advances in the field of signal and image processing Expands the discussion on spectrograms using a frames approach, which is an ideal method for reconstructing signals after information has been lost or corrupted (packet erasure) Maintains a comprehensive treatment of linear signal processing for audio and image signals with a well-balanced and accessible selection of topics that appeal to a diverse audience within mathematics and engineering Focuses on the underlying mathematics, especially the concepts of finite-dimensional vector spaces and matrix methods, and provides a rigorous model for signals and images based on vector spaces and linear algebra methods Supplemented with a companion website containing solution sets and software exploration support for MATLAB and SciPy (Scientific Python) Thoroughly class-tested over the past fifteen years, Discrete Fourier Analysis and Wavelets: Applications to Signal and Image Processing is an appropriately self-contained book ideal for a one-semester course on the subject.
Publisher: John Wiley & Sons
ISBN: 1119258243
Category : Mathematics
Languages : en
Pages : 582
Book Description
Delivers an appropriate mix of theory and applications to help readers understand the process and problems of image and signal analysis Maintaining a comprehensive and accessible treatment of the concepts, methods, and applications of signal and image data transformation, this Second Edition of Discrete Fourier Analysis and Wavelets: Applications to Signal and Image Processing features updated and revised coverage throughout with an emphasis on key and recent developments in the field of signal and image processing. Topical coverage includes: vector spaces, signals, and images; the discrete Fourier transform; the discrete cosine transform; convolution and filtering; windowing and localization; spectrograms; frames; filter banks; lifting schemes; and wavelets. Discrete Fourier Analysis and Wavelets introduces a new chapter on frames—a new technology in which signals, images, and other data are redundantly measured. This redundancy allows for more sophisticated signal analysis. The new coverage also expands upon the discussion on spectrograms using a frames approach. In addition, the book includes a new chapter on lifting schemes for wavelets and provides a variation on the original low-pass/high-pass filter bank approach to the design and implementation of wavelets. These new chapters also include appropriate exercises and MATLAB® projects for further experimentation and practice. Features updated and revised content throughout, continues to emphasize discrete and digital methods, and utilizes MATLAB® to illustrate these concepts Contains two new chapters on frames and lifting schemes, which take into account crucial new advances in the field of signal and image processing Expands the discussion on spectrograms using a frames approach, which is an ideal method for reconstructing signals after information has been lost or corrupted (packet erasure) Maintains a comprehensive treatment of linear signal processing for audio and image signals with a well-balanced and accessible selection of topics that appeal to a diverse audience within mathematics and engineering Focuses on the underlying mathematics, especially the concepts of finite-dimensional vector spaces and matrix methods, and provides a rigorous model for signals and images based on vector spaces and linear algebra methods Supplemented with a companion website containing solution sets and software exploration support for MATLAB and SciPy (Scientific Python) Thoroughly class-tested over the past fifteen years, Discrete Fourier Analysis and Wavelets: Applications to Signal and Image Processing is an appropriately self-contained book ideal for a one-semester course on the subject.
A First Course in Wavelets with Fourier Analysis
Author: Albert Boggess
Publisher: John Wiley & Sons
ISBN: 1118211154
Category : Mathematics
Languages : en
Pages : 248
Book Description
A comprehensive, self-contained treatment of Fourier analysis and wavelets—now in a new edition Through expansive coverage and easy-to-follow explanations, A First Course in Wavelets with Fourier Analysis, Second Edition provides a self-contained mathematical treatment of Fourier analysis and wavelets, while uniquely presenting signal analysis applications and problems. Essential and fundamental ideas are presented in an effort to make the book accessible to a broad audience, and, in addition, their applications to signal processing are kept at an elementary level. The book begins with an introduction to vector spaces, inner product spaces, and other preliminary topics in analysis. Subsequent chapters feature: The development of a Fourier series, Fourier transform, and discrete Fourier analysis Improved sections devoted to continuous wavelets and two-dimensional wavelets The analysis of Haar, Shannon, and linear spline wavelets The general theory of multi-resolution analysis Updated MATLAB code and expanded applications to signal processing The construction, smoothness, and computation of Daubechies' wavelets Advanced topics such as wavelets in higher dimensions, decomposition and reconstruction, and wavelet transform Applications to signal processing are provided throughout the book, most involving the filtering and compression of signals from audio or video. Some of these applications are presented first in the context of Fourier analysis and are later explored in the chapters on wavelets. New exercises introduce additional applications, and complete proofs accompany the discussion of each presented theory. Extensive appendices outline more advanced proofs and partial solutions to exercises as well as updated MATLAB routines that supplement the presented examples. A First Course in Wavelets with Fourier Analysis, Second Edition is an excellent book for courses in mathematics and engineering at the upper-undergraduate and graduate levels. It is also a valuable resource for mathematicians, signal processing engineers, and scientists who wish to learn about wavelet theory and Fourier analysis on an elementary level.
Publisher: John Wiley & Sons
ISBN: 1118211154
Category : Mathematics
Languages : en
Pages : 248
Book Description
A comprehensive, self-contained treatment of Fourier analysis and wavelets—now in a new edition Through expansive coverage and easy-to-follow explanations, A First Course in Wavelets with Fourier Analysis, Second Edition provides a self-contained mathematical treatment of Fourier analysis and wavelets, while uniquely presenting signal analysis applications and problems. Essential and fundamental ideas are presented in an effort to make the book accessible to a broad audience, and, in addition, their applications to signal processing are kept at an elementary level. The book begins with an introduction to vector spaces, inner product spaces, and other preliminary topics in analysis. Subsequent chapters feature: The development of a Fourier series, Fourier transform, and discrete Fourier analysis Improved sections devoted to continuous wavelets and two-dimensional wavelets The analysis of Haar, Shannon, and linear spline wavelets The general theory of multi-resolution analysis Updated MATLAB code and expanded applications to signal processing The construction, smoothness, and computation of Daubechies' wavelets Advanced topics such as wavelets in higher dimensions, decomposition and reconstruction, and wavelet transform Applications to signal processing are provided throughout the book, most involving the filtering and compression of signals from audio or video. Some of these applications are presented first in the context of Fourier analysis and are later explored in the chapters on wavelets. New exercises introduce additional applications, and complete proofs accompany the discussion of each presented theory. Extensive appendices outline more advanced proofs and partial solutions to exercises as well as updated MATLAB routines that supplement the presented examples. A First Course in Wavelets with Fourier Analysis, Second Edition is an excellent book for courses in mathematics and engineering at the upper-undergraduate and graduate levels. It is also a valuable resource for mathematicians, signal processing engineers, and scientists who wish to learn about wavelet theory and Fourier analysis on an elementary level.
Discrete Fourier Analysis
Author: M. W. Wong
Publisher: Springer Science & Business Media
ISBN: 3034801165
Category : Mathematics
Languages : en
Pages : 175
Book Description
This textbook presents basic notions and techniques of Fourier analysis in discrete settings. Written in a concise style, it is interlaced with remarks, discussions and motivations from signal analysis. The first part is dedicated to topics related to the Fourier transform, including discrete time-frequency analysis and discrete wavelet analysis. Basic knowledge of linear algebra and calculus is the only prerequisite. The second part is built on Hilbert spaces and Fourier series and culminates in a section on pseudo-differential operators, providing a lucid introduction to this advanced topic in analysis. Some measure theory language is used, although most of this part is accessible to students familiar with an undergraduate course in real analysis. Discrete Fourier Analysis is aimed at advanced undergraduate and graduate students in mathematics and applied mathematics. Enhanced with exercises, it will be an excellent resource for the classroom as well as for self-study.
Publisher: Springer Science & Business Media
ISBN: 3034801165
Category : Mathematics
Languages : en
Pages : 175
Book Description
This textbook presents basic notions and techniques of Fourier analysis in discrete settings. Written in a concise style, it is interlaced with remarks, discussions and motivations from signal analysis. The first part is dedicated to topics related to the Fourier transform, including discrete time-frequency analysis and discrete wavelet analysis. Basic knowledge of linear algebra and calculus is the only prerequisite. The second part is built on Hilbert spaces and Fourier series and culminates in a section on pseudo-differential operators, providing a lucid introduction to this advanced topic in analysis. Some measure theory language is used, although most of this part is accessible to students familiar with an undergraduate course in real analysis. Discrete Fourier Analysis is aimed at advanced undergraduate and graduate students in mathematics and applied mathematics. Enhanced with exercises, it will be an excellent resource for the classroom as well as for self-study.
From Fourier Analysis to Wavelets
Author: Jonas Gomes
Publisher: Springer
ISBN: 3319220756
Category : Mathematics
Languages : en
Pages : 216
Book Description
This text introduces the basic concepts of function spaces and operators, both from the continuous and discrete viewpoints. Fourier and Window Fourier Transforms are introduced and used as a guide to arrive at the concept of Wavelet transform. The fundamental aspects of multiresolution representation, and its importance to function discretization and to the construction of wavelets is also discussed. Emphasis is given on ideas and intuition, avoiding the heavy computations which are usually involved in the study of wavelets. Readers should have a basic knowledge of linear algebra, calculus, and some familiarity with complex analysis. Basic knowledge of signal and image processing is desirable. This text originated from a set of notes in Portuguese that the authors wrote for a wavelet course on the Brazilian Mathematical Colloquium in 1997 at IMPA, Rio de Janeiro.
Publisher: Springer
ISBN: 3319220756
Category : Mathematics
Languages : en
Pages : 216
Book Description
This text introduces the basic concepts of function spaces and operators, both from the continuous and discrete viewpoints. Fourier and Window Fourier Transforms are introduced and used as a guide to arrive at the concept of Wavelet transform. The fundamental aspects of multiresolution representation, and its importance to function discretization and to the construction of wavelets is also discussed. Emphasis is given on ideas and intuition, avoiding the heavy computations which are usually involved in the study of wavelets. Readers should have a basic knowledge of linear algebra, calculus, and some familiarity with complex analysis. Basic knowledge of signal and image processing is desirable. This text originated from a set of notes in Portuguese that the authors wrote for a wavelet course on the Brazilian Mathematical Colloquium in 1997 at IMPA, Rio de Janeiro.
Discrete Fourier Analysis and Wavelets
Author: S. Allen Broughton
Publisher: John Wiley & Sons
ISBN: 1118211006
Category : Mathematics
Languages : en
Pages : 266
Book Description
A thorough guide to the classical and contemporary mathematical methods of modern signal and image processing Discrete Fourier Analysis and Wavelets presents a thorough introduction to the mathematical foundations of signal and image processing. Key concepts and applications are addressed in a thought-provoking manner and are implemented using vector, matrix, and linear algebra methods. With a balanced focus on mathematical theory and computational techniques, this self-contained book equips readers with the essential knowledge needed to transition smoothly from mathematical models to practical digital data applications. The book first establishes a complete vector space and matrix framework for analyzing signals and images. Classical methods such as the discrete Fourier transform, the discrete cosine transform, and their application to JPEG compression are outlined followed by coverage of the Fourier series and the general theory of inner product spaces and orthogonal bases. The book then addresses convolution, filtering, and windowing techniques for signals and images. Finally, modern approaches are introduced, including wavelets and the theory of filter banks as a means of understanding the multiscale localized analysis underlying the JPEG 2000 compression standard. Throughout the book, examples using image compression demonstrate how mathematical theory translates into application. Additional applications such as progressive transmission of images, image denoising, spectrographic analysis, and edge detection are discussed. Each chapter provides a series of exercises as well as a MATLAB project that allows readers to apply mathematical concepts to solving real problems. Additional MATLAB routines are available via the book's related Web site. With its insightful treatment of the underlying mathematics in image compression and signal processing, Discrete Fourier Analysis and Wavelets is an ideal book for mathematics, engineering, and computer science courses at the upper-undergraduate and beginning graduate levels. It is also a valuable resource for mathematicians, engineers, and other practitioners who would like to learn more about the relevance of mathematics in digital data processing.
Publisher: John Wiley & Sons
ISBN: 1118211006
Category : Mathematics
Languages : en
Pages : 266
Book Description
A thorough guide to the classical and contemporary mathematical methods of modern signal and image processing Discrete Fourier Analysis and Wavelets presents a thorough introduction to the mathematical foundations of signal and image processing. Key concepts and applications are addressed in a thought-provoking manner and are implemented using vector, matrix, and linear algebra methods. With a balanced focus on mathematical theory and computational techniques, this self-contained book equips readers with the essential knowledge needed to transition smoothly from mathematical models to practical digital data applications. The book first establishes a complete vector space and matrix framework for analyzing signals and images. Classical methods such as the discrete Fourier transform, the discrete cosine transform, and their application to JPEG compression are outlined followed by coverage of the Fourier series and the general theory of inner product spaces and orthogonal bases. The book then addresses convolution, filtering, and windowing techniques for signals and images. Finally, modern approaches are introduced, including wavelets and the theory of filter banks as a means of understanding the multiscale localized analysis underlying the JPEG 2000 compression standard. Throughout the book, examples using image compression demonstrate how mathematical theory translates into application. Additional applications such as progressive transmission of images, image denoising, spectrographic analysis, and edge detection are discussed. Each chapter provides a series of exercises as well as a MATLAB project that allows readers to apply mathematical concepts to solving real problems. Additional MATLAB routines are available via the book's related Web site. With its insightful treatment of the underlying mathematics in image compression and signal processing, Discrete Fourier Analysis and Wavelets is an ideal book for mathematics, engineering, and computer science courses at the upper-undergraduate and beginning graduate levels. It is also a valuable resource for mathematicians, engineers, and other practitioners who would like to learn more about the relevance of mathematics in digital data processing.
Harmonic Analysis
Author: María Cristina Pereyra
Publisher: American Mathematical Soc.
ISBN: 0821875663
Category : Mathematics
Languages : en
Pages : 437
Book Description
Conveys the remarkable beauty and applicability of the ideas that have grown from Fourier theory. It presents for an advanced undergraduate and beginning graduate student audience the basics of harmonic analysis, from Fourier's study of the heat equation, and the decomposition of functions into sums of cosines and sines (frequency analysis), to dyadic harmonic analysis, and the decomposition of functions into a Haar basis (time localization).
Publisher: American Mathematical Soc.
ISBN: 0821875663
Category : Mathematics
Languages : en
Pages : 437
Book Description
Conveys the remarkable beauty and applicability of the ideas that have grown from Fourier theory. It presents for an advanced undergraduate and beginning graduate student audience the basics of harmonic analysis, from Fourier's study of the heat equation, and the decomposition of functions into sums of cosines and sines (frequency analysis), to dyadic harmonic analysis, and the decomposition of functions into a Haar basis (time localization).
An Introduction to Wavelet Analysis
Author: David F. Walnut
Publisher: Springer Science & Business Media
ISBN: 1461200016
Category : Computers
Languages : en
Pages : 453
Book Description
This book provides a comprehensive presentation of the conceptual basis of wavelet analysis, including the construction and analysis of wavelet bases. It motivates the central ideas of wavelet theory by offering a detailed exposition of the Haar series, then shows how a more abstract approach allows readers to generalize and improve upon the Haar series. It then presents a number of variations and extensions of Haar construction.
Publisher: Springer Science & Business Media
ISBN: 1461200016
Category : Computers
Languages : en
Pages : 453
Book Description
This book provides a comprehensive presentation of the conceptual basis of wavelet analysis, including the construction and analysis of wavelet bases. It motivates the central ideas of wavelet theory by offering a detailed exposition of the Haar series, then shows how a more abstract approach allows readers to generalize and improve upon the Haar series. It then presents a number of variations and extensions of Haar construction.
Wavelets and Signal Processing
Author: Hans-Georg Stark
Publisher: Springer Science & Business Media
ISBN: 3540234330
Category : Technology & Engineering
Languages : en
Pages : 159
Book Description
Professor Noubari's recommendation: "Professor Starks book provides an effective entry into the field for engineering students who have little or no prior knowledge of this important subject. Avaibility of collection of computer codes and mfiles in combination with topics of the book, makes the book highly valuable to enhance student learning of the subject matter."
Publisher: Springer Science & Business Media
ISBN: 3540234330
Category : Technology & Engineering
Languages : en
Pages : 159
Book Description
Professor Noubari's recommendation: "Professor Starks book provides an effective entry into the field for engineering students who have little or no prior knowledge of this important subject. Avaibility of collection of computer codes and mfiles in combination with topics of the book, makes the book highly valuable to enhance student learning of the subject matter."
Fourier and Wavelet Analysis
Author: George Bachmann
Publisher: Springer Science & Business Media
ISBN: 1461205050
Category : Mathematics
Languages : en
Pages : 510
Book Description
This comprehensive volume develops all of the standard features of Fourier analysis - Fourier series, Fourier transform, Fourier sine and cosine transforms, and wavelets. The books approach emphasizes the role of the "selector" functions, and is not embedded in the usual engineering context, which makes the material more accessible to a wider audience. While there are several publications on the various individual topics, none combine or even include all of the above.
Publisher: Springer Science & Business Media
ISBN: 1461205050
Category : Mathematics
Languages : en
Pages : 510
Book Description
This comprehensive volume develops all of the standard features of Fourier analysis - Fourier series, Fourier transform, Fourier sine and cosine transforms, and wavelets. The books approach emphasizes the role of the "selector" functions, and is not embedded in the usual engineering context, which makes the material more accessible to a wider audience. While there are several publications on the various individual topics, none combine or even include all of the above.
Data-Driven Science and Engineering
Author: Steven L. Brunton
Publisher: Cambridge University Press
ISBN: 1009098489
Category : Computers
Languages : en
Pages : 615
Book Description
A textbook covering data-science and machine learning methods for modelling and control in engineering and science, with Python and MATLAB®.
Publisher: Cambridge University Press
ISBN: 1009098489
Category : Computers
Languages : en
Pages : 615
Book Description
A textbook covering data-science and machine learning methods for modelling and control in engineering and science, with Python and MATLAB®.