Author: Ernesto Salinelli
Publisher: Springer
ISBN: 3319022911
Category : Mathematics
Languages : en
Pages : 398
Book Description
This book provides an introduction to the analysis of discrete dynamical systems. The content is presented by an unitary approach that blends the perspective of mathematical modeling together with the ones of several discipline as Mathematical Analysis, Linear Algebra, Numerical Analysis, Systems Theory and Probability. After a preliminary discussion of several models, the main tools for the study of linear and non-linear scalar dynamical systems are presented, paying particular attention to the stability analysis. Linear difference equations are studied in detail and an elementary introduction of Z and Discrete Fourier Transform is presented. A whole chapter is devoted to the study of bifurcations and chaotic dynamics. One-step vector-valued dynamical systems are the subject of three chapters, where the reader can find the applications to positive systems, Markov chains, networks and search engines. The book is addressed mainly to students in Mathematics, Engineering, Physics, Chemistry, Biology and Economics. The exposition is self-contained: some appendices present prerequisites, algorithms and suggestions for computer simulations. The analysis of several examples is enriched by the proposition of many related exercises of increasing difficulty; in the last chapter the detailed solution is given for most of them.
Discrete Dynamical Models
Author: Ernesto Salinelli
Publisher: Springer
ISBN: 3319022911
Category : Mathematics
Languages : en
Pages : 398
Book Description
This book provides an introduction to the analysis of discrete dynamical systems. The content is presented by an unitary approach that blends the perspective of mathematical modeling together with the ones of several discipline as Mathematical Analysis, Linear Algebra, Numerical Analysis, Systems Theory and Probability. After a preliminary discussion of several models, the main tools for the study of linear and non-linear scalar dynamical systems are presented, paying particular attention to the stability analysis. Linear difference equations are studied in detail and an elementary introduction of Z and Discrete Fourier Transform is presented. A whole chapter is devoted to the study of bifurcations and chaotic dynamics. One-step vector-valued dynamical systems are the subject of three chapters, where the reader can find the applications to positive systems, Markov chains, networks and search engines. The book is addressed mainly to students in Mathematics, Engineering, Physics, Chemistry, Biology and Economics. The exposition is self-contained: some appendices present prerequisites, algorithms and suggestions for computer simulations. The analysis of several examples is enriched by the proposition of many related exercises of increasing difficulty; in the last chapter the detailed solution is given for most of them.
Publisher: Springer
ISBN: 3319022911
Category : Mathematics
Languages : en
Pages : 398
Book Description
This book provides an introduction to the analysis of discrete dynamical systems. The content is presented by an unitary approach that blends the perspective of mathematical modeling together with the ones of several discipline as Mathematical Analysis, Linear Algebra, Numerical Analysis, Systems Theory and Probability. After a preliminary discussion of several models, the main tools for the study of linear and non-linear scalar dynamical systems are presented, paying particular attention to the stability analysis. Linear difference equations are studied in detail and an elementary introduction of Z and Discrete Fourier Transform is presented. A whole chapter is devoted to the study of bifurcations and chaotic dynamics. One-step vector-valued dynamical systems are the subject of three chapters, where the reader can find the applications to positive systems, Markov chains, networks and search engines. The book is addressed mainly to students in Mathematics, Engineering, Physics, Chemistry, Biology and Economics. The exposition is self-contained: some appendices present prerequisites, algorithms and suggestions for computer simulations. The analysis of several examples is enriched by the proposition of many related exercises of increasing difficulty; in the last chapter the detailed solution is given for most of them.
Discrete Dynamical Systems
Author: Oded Galor
Publisher: Springer Science & Business Media
ISBN: 3540367764
Category : Business & Economics
Languages : en
Pages : 159
Book Description
This book provides an introduction to discrete dynamical systems – a framework of analysis that is commonly used in the ?elds of biology, demography, ecology, economics, engineering, ?nance, and physics. The book characterizes the fundamental factors that govern the quantitative and qualitative trajectories of a variety of deterministic, discrete dynamical systems, providing solution methods for systems that can be solved analytically and methods of qualitative analysis for those systems that do not permit or necessitate an explicit solution. The analysis focuses initially on the characterization of the factors that govern the evolution of state variables in the elementary context of one-dimensional, ?rst-order, linear, autonomous systems. The f- damental insights about the forces that a?ect the evolution of these - ementary systems are subsequently generalized, and the determinants of the trajectories of multi-dimensional, nonlinear, higher-order, non- 1 autonomous dynamical systems are established. Chapter 1 focuses on the analysis of the evolution of state variables in one-dimensional, ?rst-order, autonomous systems. It introduces a method of solution for these systems, and it characterizes the traj- tory of a state variable, in relation to a steady-state equilibrium of the system, examining the local and global (asymptotic) stability of this steady-state equilibrium. The ?rst part of the chapter characterizes the factors that determine the existence, uniqueness and stability of a steady-state equilibrium in the elementary context of one-dimensional, ?rst-order, linear autonomous systems.
Publisher: Springer Science & Business Media
ISBN: 3540367764
Category : Business & Economics
Languages : en
Pages : 159
Book Description
This book provides an introduction to discrete dynamical systems – a framework of analysis that is commonly used in the ?elds of biology, demography, ecology, economics, engineering, ?nance, and physics. The book characterizes the fundamental factors that govern the quantitative and qualitative trajectories of a variety of deterministic, discrete dynamical systems, providing solution methods for systems that can be solved analytically and methods of qualitative analysis for those systems that do not permit or necessitate an explicit solution. The analysis focuses initially on the characterization of the factors that govern the evolution of state variables in the elementary context of one-dimensional, ?rst-order, linear, autonomous systems. The f- damental insights about the forces that a?ect the evolution of these - ementary systems are subsequently generalized, and the determinants of the trajectories of multi-dimensional, nonlinear, higher-order, non- 1 autonomous dynamical systems are established. Chapter 1 focuses on the analysis of the evolution of state variables in one-dimensional, ?rst-order, autonomous systems. It introduces a method of solution for these systems, and it characterizes the traj- tory of a state variable, in relation to a steady-state equilibrium of the system, examining the local and global (asymptotic) stability of this steady-state equilibrium. The ?rst part of the chapter characterizes the factors that determine the existence, uniqueness and stability of a steady-state equilibrium in the elementary context of one-dimensional, ?rst-order, linear autonomous systems.
Discovering Discrete Dynamical Systems
Author: Aimee Johnson
Publisher: American Mathematical Soc.
ISBN: 1614441243
Category : Mathematics
Languages : en
Pages : 132
Book Description
Discovering Discrete Dynamical Systems is a mathematics textbook designed for use in a student-led, inquiry-based course for advanced mathematics majors. Fourteen modules each with an opening exploration, a short exposition and related exercises, and a concluding project guide students to self-discovery on topics such as fixed points and their classifications, chaos and fractals, Julia and Mandelbrot sets in the complex plane, and symbolic dynamics. Topics have been carefully chosen as a means for developing student persistence and skill in exploration, conjecture, and generalization while at the same time providing a coherent introduction to the fundamentals of discrete dynamical systems. This book is written for undergraduate students with the prerequisites for a first analysis course, and it can easily be used by any faculty member in a mathematics department, regardless of area of expertise. Each module starts with an exploration in which the students are asked an open-ended question. This allows the students to make discoveries which lead them to formulate the questions that will be addressed in the exposition and exercises of the module. The exposition is brief and has been written with the intent that a student who has taken, or is ready to take, a course in analysis can read the material independently. The exposition concludes with exercises which have been designed to both illustrate and explore in more depth the ideas covered in the exposition. Each module concludes with a project in which students bring the ideas from the module to bear on a more challenging or in-depth problem. A section entitled "To the Instructor" includes suggestions on how to structure a course in order to realize the inquiry-based intent of the book. The book has also been used successfully as the basis for an independent study course and as a supplementary text for an analysis course with traditional content.
Publisher: American Mathematical Soc.
ISBN: 1614441243
Category : Mathematics
Languages : en
Pages : 132
Book Description
Discovering Discrete Dynamical Systems is a mathematics textbook designed for use in a student-led, inquiry-based course for advanced mathematics majors. Fourteen modules each with an opening exploration, a short exposition and related exercises, and a concluding project guide students to self-discovery on topics such as fixed points and their classifications, chaos and fractals, Julia and Mandelbrot sets in the complex plane, and symbolic dynamics. Topics have been carefully chosen as a means for developing student persistence and skill in exploration, conjecture, and generalization while at the same time providing a coherent introduction to the fundamentals of discrete dynamical systems. This book is written for undergraduate students with the prerequisites for a first analysis course, and it can easily be used by any faculty member in a mathematics department, regardless of area of expertise. Each module starts with an exploration in which the students are asked an open-ended question. This allows the students to make discoveries which lead them to formulate the questions that will be addressed in the exposition and exercises of the module. The exposition is brief and has been written with the intent that a student who has taken, or is ready to take, a course in analysis can read the material independently. The exposition concludes with exercises which have been designed to both illustrate and explore in more depth the ideas covered in the exposition. Each module concludes with a project in which students bring the ideas from the module to bear on a more challenging or in-depth problem. A section entitled "To the Instructor" includes suggestions on how to structure a course in order to realize the inquiry-based intent of the book. The book has also been used successfully as the basis for an independent study course and as a supplementary text for an analysis course with traditional content.
A First Course in Discrete Dynamical Systems
Author: Richard A. Holmgren
Publisher: Springer Science & Business Media
ISBN: 1441987320
Category : Mathematics
Languages : en
Pages : 231
Book Description
Given the ease with which computers can do iteration it is now possible for almost anyone to generate beautiful images whose roots lie in discrete dynamical systems. Images of Mandelbrot and Julia sets abound in publications both mathematical and not. The mathematics behind the pictures are beautiful in their own right and are the subject of this text. Mathematica programs that illustrate the dynamics are included in an appendix.
Publisher: Springer Science & Business Media
ISBN: 1441987320
Category : Mathematics
Languages : en
Pages : 231
Book Description
Given the ease with which computers can do iteration it is now possible for almost anyone to generate beautiful images whose roots lie in discrete dynamical systems. Images of Mandelbrot and Julia sets abound in publications both mathematical and not. The mathematics behind the pictures are beautiful in their own right and are the subject of this text. Mathematica programs that illustrate the dynamics are included in an appendix.
Discrete Dynamical Systems
Author: James T. Sandefur
Publisher: Oxford University Press, USA
ISBN:
Category : Mathematics
Languages : en
Pages : 472
Book Description
This textbook is an elementary introduction to the world of dynamical systems and Chaos. Dynamical systems provide a mathematical means of modeling and analysing aspects of the changing world around us. The aim of this ground-breaking new text is to introduce the reader both to the wide variety of techniques used to study dynamical systems and to their many applications. In particular, investigation of dynamical systems leads to the important concepts of stability, strange attractors, Chaos, and fractals.
Publisher: Oxford University Press, USA
ISBN:
Category : Mathematics
Languages : en
Pages : 472
Book Description
This textbook is an elementary introduction to the world of dynamical systems and Chaos. Dynamical systems provide a mathematical means of modeling and analysing aspects of the changing world around us. The aim of this ground-breaking new text is to introduce the reader both to the wide variety of techniques used to study dynamical systems and to their many applications. In particular, investigation of dynamical systems leads to the important concepts of stability, strange attractors, Chaos, and fractals.
Discrete Dynamical Systems and Difference Equations with Mathematica
Author: Mustafa R.S. Kulenovic
Publisher: CRC Press
ISBN: 1420035355
Category : Mathematics
Languages : en
Pages : 363
Book Description
Following the work of Yorke and Li in 1975, the theory of discrete dynamical systems and difference equations developed rapidly. The applications of difference equations also grew rapidly, especially with the introduction of graphical-interface software that can plot trajectories, calculate Lyapunov exponents, plot bifurcation diagrams, and find ba
Publisher: CRC Press
ISBN: 1420035355
Category : Mathematics
Languages : en
Pages : 363
Book Description
Following the work of Yorke and Li in 1975, the theory of discrete dynamical systems and difference equations developed rapidly. The applications of difference equations also grew rapidly, especially with the introduction of graphical-interface software that can plot trajectories, calculate Lyapunov exponents, plot bifurcation diagrams, and find ba
Formal Methods for Discrete-Time Dynamical Systems
Author: Calin Belta
Publisher: Springer
ISBN: 331950763X
Category : Technology & Engineering
Languages : en
Pages : 291
Book Description
This book bridges fundamental gaps between control theory and formal methods. Although it focuses on discrete-time linear and piecewise affine systems, it also provides general frameworks for abstraction, analysis, and control of more general models. The book is self-contained, and while some mathematical knowledge is necessary, readers are not expected to have a background in formal methods or control theory. It rigorously defines concepts from formal methods, such as transition systems, temporal logics, model checking and synthesis. It then links these to the infinite state dynamical systems through abstractions that are intuitive and only require basic convex-analysis and control-theory terminology, which is provided in the appendix. Several examples and illustrations help readers understand and visualize the concepts introduced throughout the book.
Publisher: Springer
ISBN: 331950763X
Category : Technology & Engineering
Languages : en
Pages : 291
Book Description
This book bridges fundamental gaps between control theory and formal methods. Although it focuses on discrete-time linear and piecewise affine systems, it also provides general frameworks for abstraction, analysis, and control of more general models. The book is self-contained, and while some mathematical knowledge is necessary, readers are not expected to have a background in formal methods or control theory. It rigorously defines concepts from formal methods, such as transition systems, temporal logics, model checking and synthesis. It then links these to the infinite state dynamical systems through abstractions that are intuitive and only require basic convex-analysis and control-theory terminology, which is provided in the appendix. Several examples and illustrations help readers understand and visualize the concepts introduced throughout the book.
An Introduction to Dynamical Systems
Author: Rex Clark Robinson
Publisher: American Mathematical Soc.
ISBN: 0821891359
Category : Mathematics
Languages : en
Pages : 763
Book Description
This book gives a mathematical treatment of the introduction to qualitative differential equations and discrete dynamical systems. The treatment includes theoretical proofs, methods of calculation, and applications. The two parts of the book, continuous time of differential equations and discrete time of dynamical systems, can be covered independently in one semester each or combined together into a year long course. The material on differential equations introduces the qualitative or geometric approach through a treatment of linear systems in any dimension. There follows chapters where equilibria are the most important feature, where scalar (energy) functions is the principal tool, where periodic orbits appear, and finally, chaotic systems of differential equations. The many different approaches are systematically introduced through examples and theorems. The material on discrete dynamical systems starts with maps of one variable and proceeds to systems in higher dimensions. The treatment starts with examples where the periodic points can be found explicitly and then introduces symbolic dynamics to analyze where they can be shown to exist but not given in explicit form. Chaotic systems are presented both mathematically and more computationally using Lyapunov exponents. With the one-dimensional maps as models, the multidimensional maps cover the same material in higher dimensions. This higher dimensional material is less computational and more conceptual and theoretical. The final chapter on fractals introduces various dimensions which is another computational tool for measuring the complexity of a system. It also treats iterated function systems which give examples of complicated sets. In the second edition of the book, much of the material has been rewritten to clarify the presentation. Also, some new material has been included in both parts of the book. This book can be used as a textbook for an advanced undergraduate course on ordinary differential equations and/or dynamical systems. Prerequisites are standard courses in calculus (single variable and multivariable), linear algebra, and introductory differential equations.
Publisher: American Mathematical Soc.
ISBN: 0821891359
Category : Mathematics
Languages : en
Pages : 763
Book Description
This book gives a mathematical treatment of the introduction to qualitative differential equations and discrete dynamical systems. The treatment includes theoretical proofs, methods of calculation, and applications. The two parts of the book, continuous time of differential equations and discrete time of dynamical systems, can be covered independently in one semester each or combined together into a year long course. The material on differential equations introduces the qualitative or geometric approach through a treatment of linear systems in any dimension. There follows chapters where equilibria are the most important feature, where scalar (energy) functions is the principal tool, where periodic orbits appear, and finally, chaotic systems of differential equations. The many different approaches are systematically introduced through examples and theorems. The material on discrete dynamical systems starts with maps of one variable and proceeds to systems in higher dimensions. The treatment starts with examples where the periodic points can be found explicitly and then introduces symbolic dynamics to analyze where they can be shown to exist but not given in explicit form. Chaotic systems are presented both mathematically and more computationally using Lyapunov exponents. With the one-dimensional maps as models, the multidimensional maps cover the same material in higher dimensions. This higher dimensional material is less computational and more conceptual and theoretical. The final chapter on fractals introduces various dimensions which is another computational tool for measuring the complexity of a system. It also treats iterated function systems which give examples of complicated sets. In the second edition of the book, much of the material has been rewritten to clarify the presentation. Also, some new material has been included in both parts of the book. This book can be used as a textbook for an advanced undergraduate course on ordinary differential equations and/or dynamical systems. Prerequisites are standard courses in calculus (single variable and multivariable), linear algebra, and introductory differential equations.
Positive Dynamical Systems in Discrete Time
Author: Ulrich Krause
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110365693
Category : Mathematics
Languages : en
Pages : 366
Book Description
This book provides a systematic, rigorous and self-contained treatment of positive dynamical systems. A dynamical system is positive when all relevant variables of a system are nonnegative in a natural way. This is in biology, demography or economics, where the levels of populations or prices of goods are positive. The principle also finds application in electrical engineering, physics and computer sciences. "The author has greatly expanded the field of positive systems in surprising ways." - Prof. Dr. David G. Luenberger, Stanford University(USA)
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110365693
Category : Mathematics
Languages : en
Pages : 366
Book Description
This book provides a systematic, rigorous and self-contained treatment of positive dynamical systems. A dynamical system is positive when all relevant variables of a system are nonnegative in a natural way. This is in biology, demography or economics, where the levels of populations or prices of goods are positive. The principle also finds application in electrical engineering, physics and computer sciences. "The author has greatly expanded the field of positive systems in surprising ways." - Prof. Dr. David G. Luenberger, Stanford University(USA)
Chaos in Discrete Dynamical Systems
Author: Ralph Abraham
Publisher: Springer Science & Business Media
ISBN: 1461219361
Category : Mathematics
Languages : en
Pages : 257
Book Description
The materials in the book and on the accompanying disc are not solely developed with only the researcher and professional in mind, but also with consideration for the student: most of this material has been class-tested by the authors. The book is packed with some 100 computer graphics to illustrate the material, and the CD-ROM contains full-colour animations tied directly to the subject matter of the book itself. The cross-platform CD also contains the program ENDO, which enables users to create their own 2-D imagery with X-Windows. Maple scripts are provided to allow readers to work directly with the code from which the graphics in the book were taken.
Publisher: Springer Science & Business Media
ISBN: 1461219361
Category : Mathematics
Languages : en
Pages : 257
Book Description
The materials in the book and on the accompanying disc are not solely developed with only the researcher and professional in mind, but also with consideration for the student: most of this material has been class-tested by the authors. The book is packed with some 100 computer graphics to illustrate the material, and the CD-ROM contains full-colour animations tied directly to the subject matter of the book itself. The cross-platform CD also contains the program ENDO, which enables users to create their own 2-D imagery with X-Windows. Maple scripts are provided to allow readers to work directly with the code from which the graphics in the book were taken.